K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Ta có: N = 1.3.5.7.....2013

=> 2N = 2.1.3.5.7.....2013

Vì 2N chia hết cho 2 mà không chia hết cho 4

=> 2N không là số chính phương

Vì 2N chia hết cho 3

=> 2N - 1 chia cho 3 dư 2

=> 2N - 1 không là số chính phương

Vì 2N chia hết cho 2 mà không chia hết cho 4

=> 2N chia cho 4 dư 2

=> 2N + 1 chia cho 4 dư 3

=> 2N + 1 không là số chính phương

Vậy trong 3 số tự nhiên liên tiếp 2N - 1, 2N, 2N + 1 không có số nào là số chính phương.

28 tháng 3 2018

Ta có: 2N = 2.1.3.5.7.....2013

=> 2N chia hết cho 3

=> 2N - 1 chia cho 3 dư 2

=> 2N - 1 không là SCP

28 tháng 3 2018

Ta có: N = 1.3.5.7.....2013

=> 2N = 2.1.3.5.7.....2013

Vì 2N chia hết cho 2 mà không chia hết cho 4 => 2N không là SCP

Biết làm mỗi vậy thôi, chờ tí nữa nghĩ tiếp.

4 tháng 12 2021

áoima 

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

19 tháng 12 2017

a, Ta phải chứng minh  ƯCLN(2n+1 ; 2n+3)=1

đặt : ƯCLN(2n+1;2n+3)=d

Suy ra : 2n+1 chia hết cho d 

           2n+3 chia hết cho d

Nên (2n+3) - (2n+1) chia hết cho d Hay 2 chia hết cho d 

 => d thuộc Ư(2)={1;2}

loại d=2 (vì d khác 2)

=> d = 1

Vậy 2 số tự nhiên lẻ liên tiếp nhau là 2 số nguyên tố cùng nhau

b, Gọi ƯCLN ( 2n+5 ; 3n+7)=p

Suy ra : 2n+5 chia hết cho p Hay 3.(2n+5)=6n+15 chia hết cho p

       3n+7 chia hết cho p Hay 2.(3n+7)=6n+14 chia hết cho p

Nên : (6n+15) - (6n+14) chia hết cho p hay 1chia hết cho p

=>p= 1 

vậỷ 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

31 tháng 7 2021

Đặt 2n+1=a2,3n+1=b2(\(a,b\in N;a,b>1\))

Ta có: 4(2n+1)-3n+1=4a2-b2

  <=> 5n+3=(2a+b)(2a-b)

=> 5n+3 là hợp số