K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

vì b,c là nghiệm của phương trình nên \(\hept{\begin{cases}b^2-ab-\frac{1}{2a^2}=0\\c^2-ab-\frac{1}{2a^2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b^4=\left(ab+\frac{1}{2a^2}\right)^2\\c^4=\left(ac+\frac{1}{2a^2}\right)^2\end{cases}}\)

\(b^4+c^4=\left(ab+\frac{1}{2a^2}\right)^2+\left(ac+\frac{1}{2a^2}\right)^2\ge\frac{1}{2}\left(ab+ac+\frac{1}{a^2}\right)^2\)

\(=\frac{1}{2}\left[a\left(b+c\right)+\frac{1}{a^2}\right]^2\)

mà theo viet : (tính delta đầu tiên nhá ): b+c=a.

\(\Rightarrow b^4+c^4\ge\frac{1}{2}\left(a^2+\frac{1}{a^2}\right)^2\ge2\)(AM-GM)

Dấu = xảy ra khi a=1 hoặc a=-1

11 tháng 6 2017

^^ Lời giải hay 

7 tháng 7 2018

3700 hoặc 3699

7 tháng 7 2018

đoạn sau là x2-ax-1/(2a2)=0 nha, viết thiếu.

@nguyenthanhtuan cái này là chứng minh mà bạn.

10 tháng 3 2015

tu dpcm ap dung bdt cau-chy suy ra (bc)^2 >=(2+can2):2 , roi ban xet cai nghiem do denta >0 . ap dung vao cai vua cm o tren thi ra dieu phai cm

25 tháng 5 2015

Theo hệ thức Vi - ét 

=>  a+ b = - m và a.b = 1

b + c= - n  và b.c = 2

Ta có : m .n = (-m). (-n) = (a+b). (b +c)

= [(b - a) + 2a)]. [(b- c) + 2c)] = (b - a).( b - c) + 2c( b - a) + 2a.( b - c) + 4ac

= (b - a).( b - c) + 2bc - 2ac + 2ab  - 2ac + 4ac 

= (b - a).( b - c)  + 2.2 + 2.1 = (b - a).( b - c)  + 6

=> (b - a).( b - c)  =m.n - 6 (ĐPCM)

13 tháng 10 2019

Vì a, b là 2 nghiệm của phương trình  x 2 + mx + 1 = 0 nên theo định lí Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vì b,c là 2 nghiệm của phương trình x 2  + nx + 2 = 0 nên theo định lí Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó:

(b – a)(b – c) =  b 2  – bc – ab + ac

= b 2  + bc + ab + ac – 2(ab + bc)

= b( b + c) + a (b + c) – 2 (ab + bc)

= (b + c )( b + a) – 2 (ab + bc)

= (-n).(-m) – 2(1 + 2)

= nm – 6

Bài 1:a) Cho biểu thức A= \(\frac{5\sqrt{x}+4}{x-5\sqrt{x}+4}-\frac{3-2\sqrt{x}}{\sqrt{x}-4}+\frac{\sqrt{x}+2}{\sqrt{x}-1}\)Tìm tất cả các giá trị của x để A < 1b) Cho hai số dương a,b thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2018}\)Chứng minh:  \(\sqrt{a-2018}+\sqrt{b-2018}=\sqrt{a+b}\)Bài 2:Giải phương trình: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)Bài 3: a) Cho ba số nguyên a,b,c thỏa mãn bất điều kiện 0 < a,b,c < 1. Chứng...
Đọc tiếp

Bài 1:

a) Cho biểu thức A= \(\frac{5\sqrt{x}+4}{x-5\sqrt{x}+4}-\frac{3-2\sqrt{x}}{\sqrt{x}-4}+\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

Tìm tất cả các giá trị của x để A < 1

b) Cho hai số dương a,b thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2018}\)Chứng minh:

  \(\sqrt{a-2018}+\sqrt{b-2018}=\sqrt{a+b}\)

Bài 2:

Giải phương trình: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)

Bài 3: 

a) Cho ba số nguyên a,b,c thỏa mãn bất điều kiện 0 < a,b,c < 1. Chứng minh:

\(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)

b) Tìm tất cả bộ ba số nguyên tố (a;b;c) đôi một khác nhau thỏa mãn:

\(20abc< 30\left(ab+bc+ca\right)< 21abc\)

Bài 4:  Cho tam giác ABC có trung tuyến AM. Vẽ đường thẳng d cắt các cạnh AB, AC, và AM theo thứ tự E, F, N.

a) Chứng minh \(\frac{AB}{AE}+\frac{AC}{AF}=\frac{2AM}{AN}\)

b) Giả sử d // BC. Trên tia đối của tia FB lấy điểm K. Gọi P là giao điểm của KN và AB, Q là giao điểm của KM và AC. Chứng minh PQ // BC.

 

 

 

 

 

 

1
3 tháng 8 2020

huyen