Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo BĐT Cauchy :
\(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{a+b+c}{2a}\)
Do đó : \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Tương tự : \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra khi và chỉ khi :
\(\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}\Rightarrow a+b+c=0}\), vô lí vì a, b, c là các số dương nên đẳng thức không xảy ra.
Vậy \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\).
Chết cha, mình bị thiếu chỗ dấu "=" xảy ra là c = a + b.
sửa đề lại bạn nhé =) \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)
đặt \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}=k\Rightarrow\hept{\begin{cases}a=kA\\b=kB\end{cases}va\hept{\begin{cases}c=kC\\d=kD\end{cases}}}\)
theo đề bài ta có \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{kA^2}+\sqrt{kB^2}+\sqrt{kC^2}+\sqrt{kD^2}\)
=\(\sqrt{k}\left(A+B+C+D\right)\left(1\right)\)
ta lại có \(\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}=\sqrt{\left(kA+kB+kC+kD\right)\left(A+B+C+D\right)}\)
=\(\sqrt{k\left(A+B+C+D\right)\left(A+B+C+D\right)}=\sqrt{k\left(A+B+C+D\right)^2}=\sqrt{k}\left(A+B+C+D\right)\left(2\right)\)
(1),(2)=> \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
\(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}=\frac{a+b+c+d}{A+B+C+D}\)
\(\Rightarrow A.a=\frac{A^2\left(a+b+c+d\right)}{A+B+C+D}\Rightarrow\sqrt{Aa}=\frac{A\sqrt{a+b+c+d}}{\sqrt{A+B+C+D}}\)
Tương tự ta có: \(\sqrt{Bb}=\frac{B\sqrt{a+b+c+d}}{\sqrt{A+B+C+D}}\); \(\sqrt{Cc}=\frac{C\sqrt{a+b+c+d}}{\sqrt{A+B+C+D}}\); \(\sqrt{Dd}=\frac{D\sqrt{a+b+c+d}}{\sqrt{A+B+C+D}}\)
Cộng vế với vế:
\(\sqrt{Aa}+\sqrt{Bb}+\sqrt{Cc}+\sqrt{Dd}=\frac{\sqrt{a+b+c+d}}{\sqrt{A+B+C+D}}\left(A+B+C+D\right)=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Làm cách này chắt đuoc
Ap dung BDT Bun-nhi-a-cop-xki ta co:
\(\left(\sqrt{Aa}+\sqrt{Bb}+\sqrt{Cc}+\sqrt{Dd}\right)^2\le\left(A+B+C+D\right)\left(a+b+c+d\right)\)
\(\Rightarrow\sqrt{Aa}+\sqrt{Bb}+\sqrt{Cc}+\sqrt{Dd}\le\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)Dau '=' xay ra khi \(\frac{A}{a}=\frac{B}{b}=\frac{C}{c}=\frac{D}{d}\)hay \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)
Ma theo gia thuyet cua de bai thi:
\(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)
Nen dang thuc tren ton tai voi \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)
\(a^2\sqrt{a}+b^2\sqrt{b}+c^2\sqrt{c}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(=\left(a^2\sqrt{a}+\frac{1}{\sqrt{a}}\right)+\left(b^2\sqrt{b}+\frac{1}{\sqrt{b}}\right)+\left(c^2\sqrt{c}+\frac{1}{\sqrt{c}}\right)\)
\(\ge2a+2b+2c\ge6\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=6\)
Đặt đẳng thức là A. Áp dụng bất đẳng thức AM-GM ta có:
\(\sqrt{2b\left(a-b\right)}\le\frac{2b+\left(a+b\right)}{2}=\frac{a+3b}{2}\)
Từ đó: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\)
Ta sẽ chứng minh: \(M=\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
Thật vậy, ta có: \(M=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ca}\)
Theo BĐT AM-GM ta có:
\(ab+bc+ca\le a^2+b^2+c^2\)
Áp dụng BĐT cauchy ta được:
\(M\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a^2+b^2+c^2\right)+\frac{8}{3}\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2}=\frac{3}{4}\)
Vì vậy: \(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
Từ đó ta có: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\ge2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}\)
Vậy đẳng thức xảy xa khi và chỉ khi a=b=c
Ta có: \(a< a+b\left(a,b>0\right)\Rightarrow\frac{a}{a+b}< 1\)
Có: \(\frac{a}{a+b}=\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+b}}\)
Lại có: \(\frac{a}{b+a}< 1\Leftrightarrow\sqrt{\frac{a}{b+a}}< 1\Rightarrow\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+b}}< \sqrt{\frac{a}{a+b}}\Rightarrow\frac{a}{a+b}< \sqrt{\frac{a}{a+b}}\)
Chứng minh tương tự ta có:
\(\frac{b}{b+c}< \sqrt{\frac{b}{b+c}}\)
\(\frac{c}{c+a}< \sqrt{\frac{c}{c+a}}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \sqrt{\frac{a}{a+b}}+\sqrt{\frac{b}{b+c}}+\sqrt{\frac{c}{c+a}}\)
đpcm
Sai thì thôi nhé~
Mới lp 8
doan thi khanh linh câm cái mồm đi.đã ngu lại còn thích k
áp dụng co si ta có:
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}\)
\(=\left(\frac{\sqrt{bc}}{\sqrt{a}}+\frac{\sqrt{ca}}{\sqrt{b}}\right)+\left(\frac{\sqrt{ca}}{\sqrt{b}}+\frac{\sqrt{ab}}{\sqrt{c}}\right)+\left(\frac{\sqrt{ab}}{\sqrt{c}}+\frac{\sqrt{bc}}{\sqrt{a}}\right)\)
\(\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
\(\Rightarrow Q.E.D\)
\(\sqrt{\frac{a}{b+c}}=\frac{a}{a\sqrt{b+c}}\ge\frac{2a}{a+b+c}\)
Tương tự: \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\) ; \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" ko xảy ra nên \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)