Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để biểu thức trên nguyên thì \(x^4y^4\) chia hết cho 15, nghĩa là phải có một số chia hết cho 3 và một số chia hết cho 5.
Ngoài ra, nếu ĐK trên thoả mãn là đủ, vậy để biểu thức có giá trị nhỏ nhất mình cho \(x=3,y=5\).
Đáp số là \(15^3\)
+) Vì y và x tỉ lệ thuận với nhau nên:
hay
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
ta có :
\(D=\frac{6-x+2}{x-6}=-1+\frac{2}{x-6}\)nhỏ nhất khi \(x-6=-1\Leftrightarrow x=5\)
khi đó D = -3
\(A=\frac{2014-x}{2015-x}\)
\(\Rightarrow A=\frac{2015-x-1}{2015-x}\)
\(\Rightarrow A=1-\frac{1}{2015-x}\)
Để A có Min thì \(\frac{1}{2015-x}\)có GTLN \(\Rightarrow2015-x\)phải đạt GTNN và \(\frac{1}{2015-x}>0\)
\(\Rightarrow2015-x=1\Leftrightarrow x=2014\)
Vậy Min A = 1-1=0<=> x = 2014
\(A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}\)
A nhỏ nhất khi \(\frac{1}{2015-x}>0\)lớn nhất, để \(\frac{1}{2015-x}\)lớn nhất khi 2015-x>0 nhỏ nhất. 2015-x nhỏ nhất khi x lớn nhất và x là số nguyên dương => x=2014
\(\frac{x^4\cdot y^4}{15}\\ \Leftrightarrow x^4\cdot y^4làB\left(15\right)\\ \Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)