K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

a) ĐKXĐ: x khác +-1

b) \(\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{x^2-1}\)

\(=\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2+\left(x-2\right)\left(x-1\right)-\left(2x^2+x+5\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=-\frac{2}{x-1}\)

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

16 tháng 12 2018

\(a)A=(\frac{x}{(x+6)(x+6)}-\frac{x-6}{x(x+6)})\cdot\frac{x(x+6)}{2x-6}+\frac{x}{x-6}\)

\(A=\frac{x^2-(x-6)^2}{x(x+6)(x-6)}\cdot\frac{x(x+6)}{2x-6}-\frac{x}{x-6}=\frac{(x-x+6)(x+x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}\)

\(=\frac{6(2x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}=\frac{6}{(x-6)}-\frac{x}{x-6}\cdot\frac{6-x}{x-6}=-1\)

\(b)\text{A luôn = -1 với mọi x}\)

17 tháng 12 2017

a. tìm điều kiện xác định của P

ĐKXĐ: \(x\ne0;x\ne\pm1\)

\(P=\left(\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{2\left(x+1\right)}\right):\frac{x+1}{2x}\)

\(P=\frac{4x+\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\times\frac{2x}{x+1}\)

\(P=\frac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\times\frac{2x}{x+1}\)

\(P=\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\times\frac{x}{x+1}\)

\(P=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\times\frac{x}{x+1}\)

\(P=\frac{x}{x-1}\)

b. tìm x 

Với P = 2 ta có:

\(\frac{x}{x-1}=2\)

=>  x = 2(x-1)

=> x = 2x -2

=> 2x - x = 2

=> x = 2

Vậy với x = 2 thì P = 2

c. với 0 < x < 1 . hãy so sánh P với |P|

\(P=\frac{x}{x-1}\)

Với 0< x < 1 thì x -1 <0 ; x>0 => P <0 

Suy ra P< |P| ( vì |P| >0)

 Câu hỏi tương tự Đọc thêm Báo cáoToán lớp 8
17 tháng 12 2017

A. DE P XAC DINH

<=>X^2-1 KHÁC 0<=>X KHAC -1 VÀ X KHÁC 1

<=>2X+2 KHAC 0 <=>X KHAC-1

<=>2X KHAC 0 <=>X KHAC 0

=> X KHAC O HOAC X KHAC +-1

TACO:( 2X / X^2-1 +X-1/ 2X+2 ) : X+1 / 2X

=[2X . 2 / (X+1)(X-1). 2  + (X-1)(X-1) / 2(X+1)(X-1) ] : X+1/2X

=[4X+(X-1)^2]  /  2(X+1)(X-1)  :X+1 / 2X

=(4X+X^2-2X+1) / 2(X+1)(X-1)  : X+1/2X

=X^2+2X+1 / 2(X-1)(X+1) : X+1 / 2X

=(X+1)^2 / 2(X-1)(X+1) : X+1/2X

=(X+1) / 2(X-1) . 2X/X+1

=X/X-1

B. DE P=2

<=>X/X-1=2

<=>X=2(X-1)=2X-2=X+X-2

TA CÓ: X +X-2 = X+0

=>X-2=0

=>X=2

C .VI 0<X<1

=>X / X-1 = |X/X-1|

=>P=|P|

25 tháng 2 2019

a, P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\): ( \(\frac{x+1}{x}\)\(\frac{1}{x-1}\)\(\frac{x^2-2}{x\left(x-1\right)}\)

P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)\(\frac{\left(x+1\right)\left(x-1\right)+x-x^2+2}{x\left(x-1\right)}\)

P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)\(\frac{x\left(x-1\right)}{x^2-1+x-x^2+2}\)

P=  \(\frac{x^2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

P= \(\frac{x^2}{x-1}\)( đkxđ x khác 1)

b, để P=\(\frac{-1}{2}\)\(\Rightarrow\)\(\frac{x^2}{x-1}\)=\(\frac{-1}{2}\)\(\Rightarrow\)1-x  =  2x\(^2\)

\(\Rightarrow\)2x\(^2\)+ x-1 = 0\(\Rightarrow\)2x\(^2\)- 2x +x - 1   =0\(\Rightarrow\)(x -1 ) (2x + 1) = 0

\(\Rightarrow\)\(\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}\)

vậy x= \(\frac{-1}{2}\)

c, tớ chịu thôi mà tớ mỏi tay lắm òi. k cho tớ nhé

23 tháng 12 2020

a) Điều kiện: \(x\ne0;x\ne1\)

b) \(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)

\(A=\left(\frac{x}{x-1}-\frac{1}{x.\left(x-1\right)}\right):\frac{\left(x+1\right)^2}{x}\)

\(A=\left(\frac{x^2}{\left(x-1\right).x}-\frac{1}{x.\left(x-1\right)}\right):\frac{\left(x+1\right)^2}{x}\)

\(A=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right).x}.\frac{x}{\left(x+1\right)^2}\)

\(A=\frac{x+1}{x}.\frac{x}{\left(x+1\right)^2}=\frac{1}{x+1}\)

c) Thay: \(x=2\)vào \(\frac{1}{x+1}\)ta có: \(A=\frac{1}{2+1}=\frac{1}{3}\)

23 tháng 12 2020

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

b)

\(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)

\(A=\left(\frac{x}{x-1}-\frac{1}{x\left(x-1\right)}\right)\cdot\frac{x}{x^2+2x+1}\)

\(A=\left(\frac{x\cdot x}{x\left(x-1\right)}-\frac{1}{x\left(x-1\right)}\right)\cdot\frac{x}{\left(x+1\right)^2}\)

\(A=\frac{x^2-1}{x\left(x-1\right)}\cdot\frac{x}{\left(x+1\right)^2}=\frac{\left(x^2-1\right)\cdot x}{x\left(x-1\right)\left(x+1\right)^2}=\frac{\left(x+1\right)\left(x-1\right)\cdot x}{x\left(x-1\right)\left(x+1\right)^2}=\frac{1}{x+1}\)

c) \(A=\frac{1}{x+1}=\frac{1}{2+1}=\frac{1}{3}\)

Vậy \(A=\frac{1}{3}\)

8 tháng 12 2018

\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

 \(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)

\(x^2+1\ge1\). dấu = xảy ra khi x2=0

=> x=0

Vậy \(B_{min}\Leftrightarrow x=0\)

ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)

dấu = xảy ra khi \(x+1=0\)

\(\Rightarrow x=-1\)

Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)

8 tháng 12 2018

Để A xác định 

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)

\(\Rightarrow x^2-1\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b, 

11 tháng 2 2020

a) \(ĐKXĐ:x\ne1\)

b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)

\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)

\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)

\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)

\(=\frac{1}{x-1}\)

c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .

P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.

Tại thấy câu c k khác j câu a !

19 tháng 7 2016

a) ĐKXĐ: \(\begin{cases}x\ne0\\x+5\ne0\end{cases}\Leftrightarrow\begin{cases}x\ne0\\x\ne-5\end{cases}\)

b)\(A=\frac{x^2+2x}{2x+10}+\frac{x+5}{x}-\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2.\left(x+5\right)}+\frac{x+5}{x}-\frac{50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^2+2x}{2x.\left(x+5\right)}+\frac{2\left(x+5\right)^2}{2x\left(x+5\right)}-\frac{50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^2+2x+2x^2+20x+50-50+5x}{2x\left(x+5\right)}=\frac{3x^2+27x}{2x\left(x+5\right)}=\frac{3x.\left(x+9\right)}{2x\left(x+5\right)}=\frac{3x+27}{2x+10}\)

c)Để A=1 thì: \(\frac{3x+27}{2x+10}=1\Rightarrow3x+27=2x+10\Leftrightarrow x=-17\)(nhận)

Vậy x=-17 thì A=1

19 tháng 7 2016

Mình chưa hiểu bước 3 của câu b