Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{59-x}{41}+\frac{57-x}{43}+\frac{55-x}{45}+\frac{53-x}{47}+\frac{51-x}{49}=-5\)
\(\Rightarrow\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{53-x}{47}+1+\frac{51-x}{49}+1\)\(=-5+5\)
\(\Rightarrow\frac{59-x+49}{41}+\frac{57-x+43}{43}+\frac{55-x+45}{45}+\frac{53-x+47}{47}\)\(+\frac{51-x+49}{49}=0\)
\(\Rightarrow\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\frac{100-x}{49}=0\)
\(\Rightarrow\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
Vì \(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\ne0\)
\(\Rightarrow100-x=0\)
\(\Rightarrow x=100\)
\(=\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{53-x}{47}+1+\)
\(\frac{51-x}{49}+1=-5+5\)
đoạn này có 5 là do mik mượn 5 con 1 khi đó nha
\(=\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\)
\(\frac{100-x}{49}=0\)
\(=\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
mà \(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}< 0\)
nên 100-x=0
còn lại bn từ lm
a, <=> (59-x/41 + 1) + (57-x/43 + 1) + (55-x/45 + 1) + (53-x/47 + 1) + (51-x/49 + 1) = 0
<=> 100-x/41 + 100-x/43 + 100-x/45 + 100-x/47 + 100-x/49 = 0
<=> (100-x).(1/41+1/43+1/45+1/47+1/49) = 0
<=> 100-x=0 ( vì 1/41+1/43+1/45+1/47+1/49 > 0 )
<=> x=100
Vậy x = 100
b, <=> 2-x/2016 + 1 = (1-x/2017 + 1) + (1 - x/2018)
<=> 2018-x/2016 = 2018-x/2017 + 2018-x/2018
<=> 2018-x/2016 - 2018-x/2017 - 2018-x/2018 = 0
<=> (2018-x).(1/2016-1/2017-1/2018) = 0
<=> 2018-x=0 ( vì 1/2016-1/2017-1/2018 khác 0 )
<=> x=2018
Vậy x=2018
Tk mk nha
\(\frac{x+1}{2003}+\frac{x+3}{2001}+\frac{x+5}{1999}=\frac{x+7}{1997}+\frac{x+9}{1995}+\frac{x+11}{1993}\)
\(\Leftrightarrow\frac{x+1}{2003}+1+\frac{x+3}{2001}+1+\frac{x+5}{1999}+1=\frac{x+7}{1997}+1+\frac{x+9}{1995}+1+\frac{x+11}{1993}+1\)
\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}=\frac{x+2004}{1997}+\frac{x+2004}{1995}+\frac{x+2004}{1993}\)
\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}-\frac{x+2004}{1997}-\frac{x+2004}{1995}-\frac{x+2004}{1993}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x+2004=0\) ( do \(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\ne0\))
\(\Leftrightarrow x=-2004\)
\(\frac{x+1}{2003}\)\(+\)\(\frac{x+3}{2001}\)\(+\)\(\frac{x+5}{1999}\)= \(\frac{x+7}{1997}\)\(+\frac{x+9}{1995}\)\(+\frac{x+11}{1993}\)
\(\Leftrightarrow\)\(\frac{x+1}{2003}\)\(+1+\)\(\frac{x+3}{2001}\)\(+1+\frac{x+5}{1999}\)= \(\frac{x+7}{1997}\)\(+1+\frac{x+9}{1995}\)\(+1+\frac{x+11}{1993}\)
\(\Leftrightarrow\frac{x+2004}{2003}\)\(+\frac{x+2004}{2001}\)\(+\frac{x+2004}{1999}\)\(-\frac{x+2004}{1997}\)\(-\frac{x+2004}{1995}\)\(-\frac{x+2004}{1993}\)\(=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}-\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x+2004=0\)(vì tích kia có kết quả khác 0)
\(\Leftrightarrow x=-2004\)
Vậy PT có tập nghiệm S = {-2004}
\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)
\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)
\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)
\(< =>3072-107x=\frac{38x-684}{5}\)
\(< =>\left(3072-107x\right)5=38x-684\)
\(< =>15360-535x-38x-684=0\)
\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)
nghệm xấu thế
\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)
\(< =>993-33x-11x-415=0\)
\(< =>578=44x< =>x=\frac{289}{22}\)
\(\frac{x-5}{45}-1+\frac{x-7}{43}-1=\frac{x-9}{41}-1+\frac{x-11}{39}-1\)
\(\Leftrightarrow\frac{x-50}{45}+\frac{x-50}{43}=\frac{x-50}{41}+\frac{x-50}{39}\)
\(\Leftrightarrow\left(x-50\right)\left(\frac{1}{45}+\frac{1}{43}-\frac{1}{41}-\frac{1}{39}\right)=0\)
\(\Leftrightarrow x-50=0\) (do \(\frac{1}{45}+\frac{1}{43}-\frac{1}{41}-\frac{1}{39}\ne0\))
\(\Rightarrow x=50\)