K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

a) 2\(\frac{x}{7}\) = \(\frac{75}{35}\)

\(\frac{2.7+x}{7}\) = \(\frac{75:5}{35:5}\) = \(\frac{15}{7}\)

=> 2.7+x = 15

      14+x = 15

            x = 15-14 = 1

              Vậy x=1

b)4\(\frac{3}{x}\) = \(\frac{47}{x}\)

\(\frac{4.x+3}{x}\) \(\frac{47}{x}\)
=> 4.x + 3 = 47

4x= 47-3=44

vậy x= 44:4=11

c)x\(\frac{x}{15}\) = \(\frac{112}{5}\)

x\(\frac{x}{15}\) =\(\frac{112.3}{5.3}\) = \(\frac{336}{15}\)

\(\frac{x.15+x.1}{15}\) = \(\frac{336}{15}\) 

=>(15+1) x =336

       16x    = 336

           x     = 336 : 16

       vậy   x       = 21

13 tháng 3 2016

Bạn xem lại đề.

13 tháng 3 2016

Lấy máy tính bấn tổng kia thì bé hơn 1/2. Xem lại đề

10 tháng 4 2016

Tổng quát: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\) (với mọi số tự nhiên n khác 0)

Ta có: \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\) (vì \(\frac{1}{100}>0\) )

=>đpcm

 

15 tháng 4 2016
\(\frac{9.25-63}{9.10+153}\)=\(\frac{9.25-9.7}{9.10+9.17}\)=\(\frac{9.\left(25-7\right)}{9.\left(10+17\right)}\)=\(\frac{9.18}{9.27}\)=\(\frac{1.2}{1.3}\)=\(\frac{2}{3}\)
7 tháng 3 2016

Ta có :

\(\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}\)

\(=\frac{1}{1.2}+\frac{1}{2.7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}\)

Giá trị không đổi khi cả tử và mẫu cùng nhân với 2, ta được :

\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}+\frac{2}{16.19}\)

\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\right)\)

\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{16}-\frac{1}{19}\right)\)

\(=\frac{2}{3}.\left(1-\frac{1}{19}\right)=\frac{2}{3}.\frac{18}{19}=\frac{12}{19}\)

7 tháng 3 2016

\(A=\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}=\frac{1}{2}.\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{208}+\frac{1}{304}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{19}\right)=\frac{9}{19}\)

Ta có:

\(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{6}\right|\ge0\\...\\\left|x+\frac{1}{110}\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\ge0\)

\(\Rightarrow11x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\)

=\(x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}\)

\(=10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)

Đặt \(A=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\)

\(\Rightarrow A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{11-10}{10.11}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)

\(\Rightarrow A=1-\frac{1}{11}=\frac{10}{11}\)

\(\Rightarrow10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=10x+A=10x+\frac{10}{11}=11x\)

\(\Rightarrow\frac{10}{11}=11x-10x\)

\(\Rightarrow x=\frac{10}{11}\)

10 tháng 3 2016

\(\Leftrightarrow\frac{1}{2}+\left(\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{2}+2.\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3}{10}\)

\(\Leftrightarrow2.\left(\frac{1}{7}-\frac{1}{x+1}\right)=\frac{3}{10}-\frac{1}{2}=-\frac{1}{5}\)

\(\Leftrightarrow\frac{1}{7}-\frac{1}{x+1}=-\frac{1}{5}:2=-\frac{1}{10}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{7}-\left(-\frac{1}{10}\right)=\frac{17}{70}\)

\(\Rightarrow17x+17=70\)

=> không tồn tại n vì n là số tự nhiên