K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

\(\frac{1}{1+2}\)\(\frac{1}{1+2+3}\)+  \(\frac{1}{1+2+3+4}\)+ ....+  \(\frac{1}{1+2+3+4+...+99+100}\)= ?

   = \(\frac{1}{3}\)\(\frac{1}{6}\)\(\frac{1}{10}\)+...+ \(\frac{1}{5050}\)

  = (\(\frac{1}{3}+\frac{1}{5050}\)) x \(\frac{2}{1}\)

\(\frac{5050}{15150}\)+  \(\frac{3}{15150}\)\(\frac{2}{1}\)

\(\frac{5053}{15150}\)x  \(\frac{2}{1}\)

\(\frac{10106}{15150}\)

 Vậy tổng là: \(\frac{10106}{15150}\)

k nha!Khó lắm đó mới giải được

1 tháng 3 2017

Xin lỗi bạn! Đáp án là bằng một vì dượng mình có chỉ nhưng dượng không chỉ mình cách giải.

22 tháng 7 2015

\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}\)

\(=\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)++...+\left(1+\frac{98}{2}\right)1}\)

\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)

\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{100\times\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)}\)

\(=\frac{1}{100}\)

 

22 tháng 11 2015

\(A=\frac{\frac{98}{2}+1+\frac{97}{3}+1+.....+\frac{2}{98}+1+\frac{1}{99}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}}=\frac{\frac{100}{2}+\frac{100}{3}+........+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}+\frac{1}{100}}\)

    \(=\frac{100\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}{\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}=100\)

7 tháng 11 2017

Bạn ơi cuối cùng là + 100 ak

7 tháng 11 2017

Nếu + 100 thì giải thế này nha :

1/2.3 + 1/3.4 + .... + 1/98.99 + 100

= (3-2)/2.3+(4-3)/3.4+.....+(99-98)/98.99 +100

= 1/2 - 1/3 + 1/3 - 1/4 + ...... + 1/98 - 1/99 + 100

= 1/2 - 1/99 + 100 = 97/198 + 100 = 19897/198

a,Đặt  \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)

 \(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)

\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=\frac{99}{300}\)

b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)

c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\)           (dấu . là dấu nhân)

Gọi nhiệt độ cần tìm là x. Ta có : 

xoC = xoF

=> x . 1,8 + 32 = x 

=> x . (1 + 0,8) = x - 32

=> x + 0,8x = x - 32

=> 0,8x = -32

=> x = -32 : 0,8 = -40

Vậy tại nhiệt độ -40oF thì số đọc trên nhiệt giai Fa-ren-hai bằng số đọc trên nhiệt giai Xen-xi-út. 

ko bt dung ko

minh nham

12 tháng 5 2015

Đặt A = \(\frac{\frac{1}{2}}{1+2}+\frac{\frac{1}{2}}{1+2+3}+...+\frac{\frac{1}{2}}{1+2+3+....+100}\)

         = \(\frac{1}{2}\left(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{100.101:2}\right)\)

         = \(\frac{1}{2}\left(\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{100.101}\right)\)

         = \(\frac{1}{2}.2\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)\)

         = 1\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{100}-\frac{1}{101}\right)\)

         = \(\frac{1}{2}-\frac{1}{101}=\frac{101}{202}-\frac{2}{202}=\frac{99}{202}\)

10 tháng 9 2017

Thua k câu hỏi trước của mình nhé

10 tháng 9 2017

k là k đánh lộn