Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2004 chia hết cho 4 nên 20042006 chia hết cho 4
Vì 92 chia hết cho 4 nên 9294 chia hết cho 4
=> đặt 72004^2006 = 74k
và đặt 392^94 = 34q
Do đó \(\frac{1}{10}\left(7^{4k}-3^{4q}\right)=\frac{7^{4k}-3^{4q}}{10}=\frac{\left(.....1\right)-\left(....1\right)}{10}=\frac{......0}{10}\)
Vì .....0 chia hết cho 10 và chắc chắn nó lớn hơn 10 nên \(\frac{.....0}{10}\)là số tự nhiên
Vậy...
Ta có:
\(\frac{1}{10}.\left(7^{2004^{2006}-3^{92^{94}}}\right)\)
=\(\frac{7^{2004^{2006}}-3^{92^{94}}}{10}\)
Vậy để số trên là 1 số tự nhiên thì:
\(7^{2004^{2006}-3^{92^{94}}}\)phải chia hết cho 10
MÀ : \(7^{2004^{2006}}=7^{\left(4.501\right)^{2006}}\)=...1
\(3^{92^{94}}=3^{\left(4.23\right)^{94}}\)=....1
(Vì các số có chữ số tận cùng là 3;7;9 khi nâng lên lũy thừ bậc 4k thì có chữ số tận cùng là 1)
=>\(7^{2004^{2006}}-3^{92^{94}}\)=...1 - ...1=...0 chia hết cho 10 (vì có chữ số tận cùng là 0)
Vậy tích trên là 1 số tự nhiên
Hướng chứng mính:Chứng minh \(7^{2004^{2006}}-3^{92^{94}}⋮10\)
Cách chứng minh:Ta có:\(2004⋮4\Rightarrow2004^{2006}⋮4\).Đặt \(2004^{2006}=4k\) (1)
Lại có:\(92⋮4\Rightarrow92^{94}⋮4\).Đặt \(92^{94}=4m\) (2)
Từ (1) và (2) ta có:74k-34m=(74)k-(34)m=2401k-81m=.......................1-.......................1=.........................0 chia hết cho 10
Vậy A là STN
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Trần Anh Dũng - Toán lớp 6 - Học toán với OnlineMath
7^2 đồng dư với -1 (mod 10)
7^2 tất cả mũ 1002^2006 đồng dư với (-1)^2006 =1(mod 10)
7^2004^2006đồng dư với 1(mod 10)
tương tự cm được 3^92^94 đồng dư với 1(mod10)
ta có 7^2004^2006 đồng dư vói 1(mod10)
3^92^94đồng dư vói 1(mod10)
suy ra 7^2004^2006-3^92^94 đồng dư với 1-1 =0(mod 10)
suy ra 7^2004^2006-3^92^94chia hết cho 10
suy ra 7^2004^2006-3^92^94 = 10k(k thuộc \(ℕ^∗\))
suy ra A=1/10x10k=k
suy ra a là số tn
Ta có
71 = 7; 72 = 49 ; 73 = ...3 (tận cùng là 3); 74 = ...1 (tận cùng là 1); 75 = ...7
=> 74k có tận cùng là 1. Mà 20042006 chia hêt cho 4 (do 2004 chia hết cho 4)
=> \(7^{2004^{2006}}\) có tận cùng là 1
Tương tự:
31 = 3 ; 32 = 9; 33 = ...7 (tận cùng là 7); 34 = ...1 (tận cùng là 1); 35 = ...3 (tận cùng là 3)
Tổng quát ta có 34k có tận cùng là 1.
Mà 9294 chia hết cho 4 (vì 92 chia hết cho 4)
=> \(7^{2004^{2006}}\)có tận cùng là 1.
Hai số có tận cùng đều là 1 thì hiệu của chúng có tận cùng là 0, chia hết cho 10