Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tui nghĩ là ko.
vì làm bạn lâu năm sẽ giúp cho chúng ta có thể hiểu nhau hơn, v
tui thấy hoàn cảnh cn bff nó giống tui quá nên hỏi bói tí
Trong toán học, khái niệm hàm số (hay hàm) được hiểu tương tự như khái niệm ánh xạ. Thực chất hàm số chỉ là trường hợp đặc biệt của ánh xạ. Nếu như ánh xạ được định nghĩa là một quy tắc tương ứng áp dụng lên hai tập hợp bất kỳ (còn được gọi là tập nguồn và tập đích), mà trong đó mỗi phần tử của tập hợp này (tập hợp nguồn) tương ứng với một và chỉ một phần tử thuộc tập hợp kia (tập hợp đích), thì ta hoàn toàn có thể coi hàm số là một trường hợp đặc biệt của ánh xạ, khi tập nguồn và tập đích đều là tập hợp số.
Ví dụ một hàm số f xác định trên tập hợp số thực R bằng biểu thức: y = x2 - 5 sẽ cho tương ứng mỗi số thực x với một số thực y duy nhất nhận giá trị là x2 - 5, như vậy 3 sẽ tương ứng với 4. Khi hàm f được xác định, ta có thể viết f(3) = 4
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và gọi x là biến số.
VD một bài tập về hàm số: y = f(x) = 3x2 + 1. Tính f(1)
Chú ý
- Hàm số có thể được cho bằng bảng, bằng lừoi, bằng công thức.... Khi hàm số được cho bằng công thức thì ta hiểu rằng biến số x chỉ nhận những giá trị làm cho công thức có nghĩa.
- Hàm số thường được kí hiệu y = f(x)
a) Trường hợp 1: cạnh – cạnh – cạnh: Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
b) Trường hợp 2: cạnh – góc – cạnh: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.
c) Trường hợp 3: góc – cạnh – góc: Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.
1. Hai tam giác bằng nhau
Hai tam giác bằng nhau là hai tam giác có các cạnh tường ứng bằng nhau, các góc tương ứng bằng nhau.
2. Các trường hợp bằng nhau của tam giác
a) Trường hợp 1 : cạnh – cạnh – cạnhNếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằngnhau.
b) Trường hợp 2 : cạnh – góc – cạnhNếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tamgiác kia thì hai tam giác đó bằng nhau.
c) Trường hợp 3 : góc – cạnh – gócNếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tamgiác kia thì hai tam giác đó bằng nhau.
3. Các trường hợp bằng nhau của tam giác vuông
a) Trường hợp 1 : hai cạnh góc vuông (cạnh – góc - cạnh)Nếu hai cạnh góc vuông của tam giác vuông này bằng hai cạnh góc vuông của tam giácvuông kia thì hai tam giác vuông đó bằng nhau.
b) Trường hợp 2 : cạnh huyền – góc nhọn (góc – cạnh – góc)Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một gócnhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
c) Trường hợp 3 : cạnh huyền – cạnh góc vuông (cạnh – cạnh – cạnh)Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền vàmột cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Đồ thị của hàm số Bài viết này không được chú giải bất kỳ nguồn tham khảo nào. ... Nếu đầu vào x là một cặp có thứ tự các số thực (x1, x2) thì đồ thị của hàm số f là tập hợp tất cả các bộ ba có thứ tự (x1, x2, f(x1, x2)), và đối với một hàm liên tục thì đó là một mặt.
Đồ thị của hàm số Bài viết này không được chú giải bất kỳ nguồn tham khảo nào. ... Nếu đầu vào x là một cặp có thứ tự các số thực (x1, x2) thì đồ thị của hàm số f là tập hợp tất cả các bộ ba có thứ tự (x1, x2, f(x1, x2)), và đối với một hàm liên tục thì đó là một mặt.
là số ko thay đổi
Tham khảo Trong toán học, một hàm số hay hàm là một quan hệ hai ngôi giữa hai tập hợp liên kết mọi phần tử của tập hợp đầu tiên với đúng một phần tử của tập hợp thứ hai. Ví dụ điển hình là các hàm từ số nguyên sang số nguyên hoặc từ số thực sang số thực.