Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề đâu, mà giải chi tiết thì đăng 1 câu hỏi trong 1 lần đăng thôi
\(a,x^3+9x^2+27x+27=\left(x+3\right)^3\\ b,\dfrac{x^3}{8}+\dfrac{3}{4}x^2y^2+\dfrac{3}{2}xy^4+y^6=\left(\dfrac{x}{2}+y^2\right)^3\\ c,x^3+6x^2+12x+8=\left(x+2\right)^3\\ d,27x^3-54x^2y+36xy^2-8y^3=\left(3x-2y\right)^3\\ e,8x^6-12x^4+6x^2-1=\left(2x^2-1\right)^3\)
2
a) \(=x\left(3x^3-x^2+5\right)\)
b) \(=\left(2x+3y\right)\left(x-y\right)\)
c) \(=\left(x^2-3x\right)-\left(4x-12\right)=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
a, = x.(3x3 - x2 + 5)
b, = 2x.(x - y) + 3y.(x - y) = (x - y).(2x + 3y)
c, = x2 - 3x - 4x + 12 = (x2 - 3x) - (4x - 12) = x.(x - 3) - 4.(x - 3) = (x - 3).(x - 4)
a: \(CB=\sqrt{8^2+6^2}=10\left(cm\right)\)
Xet ΔBAC có CD là phân giác
nên AD/AC=BD/CB
=>AD/3=BD/5=(AD+DB)/(3+5)=8/8=1
=>AD=3cm; BD=5cm
b: Xét ΔABC vuông tại A có AF là đường cao
nên AB^2=BF*BC
\(BF=\dfrac{8^2}{10}=6.4\left(cm\right)\)
CF=10-6,4=3,6cm
IF/AI=BF/BA
AD/DB=AC/CB
mà BF/BA=AC/CB
nên IF/AI=AD/DB
b: Xét ΔHDB vuông tạiH và ΔFCA vuông tại F có
góc HBD=góc FAC
=>ΔHDB đồng dạng với ΔFCA
Gọi K là trung điểm của DC
Suy ra: AD=DK=KC
Xét ΔDBC có
M là trung điểm của BC
K là trung điểm của CD
Do đó: MK là đường trung bình của ΔDBC
Suy ra: MK//BD
Xét ΔAMK có
D là trung điểm của AK
DI//MK
Do đó: I là trung điểm của AM
hay AI=IM
\(9,\dfrac{x^2-81}{10x^2-90x}=\dfrac{\left(x-9\right)\left(x+9\right)}{10x\left(x-9\right)}=\dfrac{x+9}{10x}\Rightarrow M=10x\\ 10,\dfrac{2x^2+3x}{4x^2-9}=\dfrac{x\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{x}{2x-3}\Rightarrow A=x\)
\(9,M=\dfrac{\left(x+9\right)\left(10x^2-90x\right)}{x^2-81}=\dfrac{10x\left(x+9\right)\left(x-9\right)}{\left(x-9\right)\left(x+9\right)}=10x\\ 10,A=\dfrac{\left(2x-3\right)\left(2x^2+3x\right)}{4x^2-9}=\dfrac{x\left(2x+3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}=x\)
e) \(\left(x^2-4\right)\left(x^2+4\right)=\left(x^2\right)^2-4^2=x^4-16\)
f) \(\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
(x2 - 4)(x2 + 4)
Áp dụng hằng đẳng thức số 3, ta có:
<=> \(\left[\left(x^2\right)^2-4^2\right]\)
<=> (x4 - 16)
Mik làm chi tiết rồi, có gì ko hiểu bảo mik
a) \(\left(5x+5\right)^2+10\left(x-3\right)\left(1+x\right)+x^2-6x+9=\left[5\left(x+1\right)\right]^2+2.5\left(x+1\right)\left(x-3\right)+\left(x-3\right)^2=\left[5\left(x+1\right)+\left(x-3\right)\right]^2=\left(5x+5+x-3\right)^2=\left(6x+2\right)^2=\left(6x\right)^2+2.6x.2+2^2=36x^2+24x+4\)
b) \(\left(\dfrac{x}{2}-2y\right)^2=\left(\dfrac{x}{2}\right)^2-2.\dfrac{x}{2}.2y+\left(2y\right)^2=\dfrac{x^2}{4}-2xy+4y^2\)
a: \(\left(5x+5\right)^2+10\left(x-3\right)\left(x+1\right)+x^2-6x+9\)
\(=\left[5\left(x+1\right)\right]^2+2\cdot5\left(x+1\right)\cdot\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(5x+5+x-3\right)^2\)
\(=\left(6x+2\right)^2\)
b: \(\left(\dfrac{1}{2}x-2y\right)^2=\dfrac{1}{4}x^2-2xy+4y^2\)