K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

42 : x + 36 : x = 6

19 tháng 7 2023

TH1

42:x=6

x= 42 :6 

X= 7

TH 2

36:x = 6

X = 36: 6

X= 6

28 tháng 9 2023

1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/2023.(1+2+3+...+2023)

=1+1/2.(1+2).2/2+1/3.(1+3).3/2+1/4.(1+4).4/2+...+1/2023.(1+2+3+...+2023).2023/2

=2/2+3/2+4/2+...+2023/2

=2+3+4+...+2023/2

=2025.2022/2/2                 

=1023637,5       

21 tháng 9 2023

A = \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+ \(\dfrac{1}{1+2+...+2004}\)\(\dfrac{2}{2025}\)

A = \(\dfrac{1}{\left(1+3\right).3:2}\)+\(\dfrac{1}{\left(4+1\right).4:2}\)+...+ \(\dfrac{1}{\left(2024+1\right).2024:2}\)+\(\dfrac{2}{2025}\)

A = \(\dfrac{2}{3.4}\)+\(\dfrac{2}{4.5}\)+...+\(\dfrac{2}{2024.2025}\)\(\dfrac{2}{2025}\)

A = 2.(\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{2024.2025}\)) + \(\dfrac{2}{2025}\)

A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+ \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)

A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)

A = \(\dfrac{2}{3}\) - \(\dfrac{2}{2025}\) + \(\dfrac{2}{2025}\)

A  = \(\dfrac{2}{3}\) 

 

3 tháng 5 2023

\(A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}-\left(\dfrac{1}{2}\right)^{2024}\)

\(A=\dfrac{2}{2^2}-\dfrac{1}{2^2}+\dfrac{2}{2^4}-\dfrac{1}{2^4}+...+\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{2024}}\)

\(A=\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+\dfrac{2^{2018}}{2^{2024}}+...+\dfrac{1}{2^{2024}}\)

\(2^2A=\dfrac{2^{2024}}{2^{2024}}+\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+...+\dfrac{2^2}{2^{2024}}\)

\(\Rightarrow4A-A=3A=1-\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)

\(3A=1-\left(\dfrac{2}{2^{2024}}+\dfrac{1}{2^{2024}}\right)\)

\(3A=1-\dfrac{3}{2^{2024}}\)

\(A=\dfrac{1-\dfrac{3}{2^{2024}}}{3}\)

\(A=\dfrac{3\left(\dfrac{1}{3}-\dfrac{1}{2^{2024}}\right)}{3}\)

\(A=\dfrac{1}{3}-\dfrac{1}{2^{2024}}\)

3 tháng 5 2023

giúp mk vs các bn. chiều nay mk phải nộp r

15 tháng 7 2023

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2023}\right)\left(1-\dfrac{1}{2024}\right)\)

=\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2022}{2023}.\dfrac{2023}{2024}=\dfrac{1}{2024}\)

15 tháng 7 2023

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2024}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{2023}{2024}\)

\(=\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot2023}{2\cdot3\cdot4\cdot5\cdot...\cdot2024}\)

\(=\dfrac{1}{2024}\)

30 tháng 9 2023

\(S=1+3^2+3^4+...+3^{2022}\)

\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)

\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)

d, không đáp án nào đúng

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Lời giải:

$S=1+3^2+3^4+....+3^{2022}$

$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$

$\Rightarrow 9S-S=3^{2024}-1$

$\Rightarrow S=\frac{3^{2024}-1}{8}$

Đáp án D.

26 tháng 2 2017

A=(1+1+....+1)-(1/2 +1/4 +...+1/1024)

A=10-(1/2+ 1/4+...+1/1024)

ta có B=1/2+1/4+..1/1024

         2B=1+1/2+....+1/512

       2B-B=(1+1/2+...+1/512)-(1/2+1/4+...+1/1024)

          B=1-1/1024=1023/1024

 A=10-1023/1024=9217/1024

11 tháng 4 2019

sai đề ko bạn ?

23 tháng 3 2023

P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997

P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997

P= 0 +0 +...+ 0 +997

P=997