Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy \(( - 32{x^5} + 1):( - 2x + 1) = 16{x^4} + 8{x^3} + 4{x^2} + 2x + 1\).
Câu 1:
a)A=|x+1|+2016
Vì |x+1|\(\ge\)0
Suy ra:|x+1|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0
x=-1
Vậy MinA=2016 khi x=-1
b)B=2017-|2x-\(\frac{1}{3}\)|
Vì -|2x-\(\frac{1}{3}\)|\(\le\)0
Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017
Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)
\(2x=\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy Max B=2017 khi \(x=\frac{1}{6}\)
c)C=|x+1|+|y+2|+2016
Vì |x+1|\(\ge\)0
|y+2|\(\ge\)0
Suy ra:|x+1|+|y+2|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0;x=-1
y+2=0;y=-2
Vậy MinC=2016 khi x=-1;y=-1
d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10
=10-|x+\(\frac{1}{2}\)|-|y-1|
Vì -|x+\(\frac{1}{2}\)|\(\le\)0
-|y-1| \(\le\)0
Suy ra: 10-|x+\(\frac{1}{2}\)|-|y-1| \(\le\)10
Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)
y-1=0;y=1
Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1
Bài 1:
a)Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)
\(\Rightarrow A\ge2016\)
Dấu = khi x=-1
Vậy MinA=2016 khi x=-1
b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)
\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)
\(\Rightarrow B\le2017\)
Dấu = khi x=1/6
Vậy Bmin=2017 khi x=1/6
c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)
\(\Rightarrow D\ge2016\)
Dấu = khi x=-1 và y=-2
Vậy MinD=2016 khi x=-1 và y=-2
d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)
\(\Rightarrow D\le10\)
Dấu = khi x=-1/2 và y=1
Vậy MaxD=10 khi x=-1/2 và y=1
\(A=\left(x-1\right)^2+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ 1>0.\\ \Rightarrow\left(x-1\right)^2+1\ge1\forall x\in R.\\ \Rightarrow A\ge1.\\ \Rightarrow A_{min}=1.\)
\(B=x^2+x^4-\dfrac{1}{2}.\\ x^2+x^4\ge0\forall x\in R.\\ \Leftrightarrow x^2+x^4-\dfrac{1}{2}\ge\dfrac{-1}{2}\forall x\in R.\\ \Rightarrow B\ge\dfrac{-1}{2}.\\ \Rightarrow B_{min}=\dfrac{-1}{2}.\)
\(D=\dfrac{2}{\left(x-1\right)^2}+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}\ge0.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}+1\ge1\forall x\in R.\\ \Rightarrow D\ge1.\\ \Rightarrow D_{min}=1.\)
a: đề thiếu chỗ giá trị của y nếu x=-1 hoặc x=1/2 rồi bạn
b: Theo đề,ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot4+2b+c=5\\2+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b+c=-3\\b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\c=-3\end{matrix}\right.\)
a: \(\left(x+\dfrac{1}{4}\right)+\left(3x-4\right)+2\left(x-3\right)=1\)
=>\(x+\dfrac{1}{4}+3x-4+2x-6=1\)
=>\(6x-\dfrac{39}{4}=1\)
=>\(6x=1+\dfrac{39}{4}=\dfrac{43}{4}\)
=>\(x=\dfrac{43}{4}:6=\dfrac{43}{24}\)
b: \(2\left(x-3\right)=3\left(x+2\right)-x+1\)
=>\(2x-6=3x+6-x+1\)
=>2x-6=2x+7
=>-6=7(vô lý)
c: \(x\left(x+3\right)+x\left(x-2\right)=2x\left(x-1\right)\)
=>\(x^2+3x+x^2-2x=2x^2-2x\)
=>3x-2x=-2x
=>3x=0
=>x=0
d: \(\left(x-1\right)\cdot3x-2\left(x+2\right)-2x=x\left(x-1\right)\)
=>\(3x^2-3x-2x-4-2x=x^2-x\)
=>\(3x^2-7x-4-x^2+x=0\)
=>\(2x^2-6x-4=0\)
=>\(x^2-3x-2=0\)
=>\(x=\dfrac{3\pm\sqrt{17}}{2}\)
`D(x) = (x+2) (1-x)`
`D(x)= x - x + 2 -2x`
`D(x) = -2x+2`
Em cần viết đề bài rõ ràng nhé!