K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x  = 1\) không là số vô tỉ.

(2) “Bình phương của mọi số thực đều không âm” đúng;

(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;

(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.

18 tháng 9 2021

Giả sử \(\sqrt{3}\) là một số hữu tỉ thì tồn tại hai số nguyên m và n sao cho:
\(\dfrac{m}{n}=\sqrt{3}\left(1\right)\)
với \(\dfrac{m}{n}\) là phân số tối giản hay m và n có ước chung lớn nhất bằng 1
Khi đó từ \(\left(1\right)\Leftrightarrow m=n\sqrt{3}\Leftrightarrow m^2=3n^2\left(2\right)\)
Từ đó suy ra \(m^2\) chia hết cho 3 nên m phải chia hết cho 3\(\left(3\right)\)
Do đó tồn tại số nguyên k sao cho \(m=3k\) Thay vào \(\left(2\right)\) ta có thể suy ra \(n^2=3k^2\) hay \(n=\sqrt{3}k\)
Do k là số nguyên nên suy ra n không nguyên.
Từ đây suy ra giả sử ban đầu là sai, tức là không có cặp số m,n nguyên nào để \(\dfrac{m}{n}=\sqrt{3}\) Vậy \(\sqrt{3}\) không là số hữu tỉ \(\left(\sqrt{3}\notin Q\right)\)

18 tháng 9 2021

cảm ơn ạ

 

3 tháng 3 2017

Đáp án: D

Các bước giải bài toán trên đều đúng.

2 tháng 10 2021

Giả sử căn 3 không phải số vô tỉ suy ra:

tồn tại số m và n  sao cho căn 3 = m/n   (m,n là nguyên tố cùng nhau)

khi đó  3n^2 = m^2

=> m chia hết 3, đặt m=3p ( p là số nguyên)

thay m = 3p ta có

3n^2 = 9p^2

n^2 = 3p^2

=> n chia hết cho 3

=> m và n cùng chia hết cho 3

mâu thuẫn với giả thiết ban đầu , m/n tối giản , m,n là nguyên tố cùng nhau

=> căn 3 là số vô tỉ

AH
Akai Haruma
Giáo viên
14 tháng 7 2018

Lời giải:

Phản chứng. Giả sử \(A=a\sqrt{n}+b\sqrt{n+1}\in\mathbb{Q}\)

Bình phương 2 vế:

\(\Rightarrow a^2n+b^2(n+1)+2ab\sqrt{n(n+1)}=A^2\)

\(\Rightarrow 2ab\sqrt{n(n+1)}=A^2-a^2n-b^2(n+1)\in\mathbb{Q}\)

\(2ab\in\mathbb{Q}\Rightarrow \sqrt{n(n+1)}\in\mathbb{Q}\)

Do \(n\in\mathbb{N}^*\Rightarrow n(n+1)\in\mathbb{N}^*\). Suy ra, để \(\sqrt{n(n+1)}\in\mathbb{Q}\) thì nó phải có dạng \(t\) (\(t\in\mathbb{N})\)

Ta có:

\(\sqrt{n(n+1)}=t\)

\(\Rightarrow n(n+1)=t^2\)

\(\Rightarrow 4n(n+1)=(2t)^2\Rightarrow (2n+1)^2=(2t)^2+1\)

\(\Leftrightarrow (2n+1-2t)(2n+1+2t)=1\)

\(\Rightarrow \left\{\begin{matrix} 2n+1-2t=1\\ 2n+1+2t=1\end{matrix}\right.\rightarrow n=0\) (vô lý do \(n\in\mathbb{N}^*\) )

Vậy giả sử là sai. Do đó \(A\not\in\mathbb{Q}\) hay A vô tỉ.

14 tháng 7 2018

thanks nhiều

Tham khảoa: giả sử n^2 chia hết cho 3 nhưng n ko chia hết cho 3 
=> n chia 3 dư a (0<a <3) 
=> n = 3b +a 
=> n^2 = 9b^2 + 6ab + a^2 chia hết cho 3 
=> a^2 chia hết cho3 mà 0<a <3 
=> vô lý do ko có số nào thỏa mãn 
=> giả sử sai 
=> n^2 chia hết cho 3 <=> n chia hết cho 3b: undefinedc:Giả sử: n^2 là số lẻ và n là số chẵn
Vì n chẵn => n = 2k(k thuộc N*)
                =>n^2 = 4k^2
                =>n^2 là số chẵn(trái với giả thiết)
Vậy khi n^2 là số lè thì n là số lẻ