K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2023

Đặt Albert; Bernard; Cheryl laf A;B;C

 Trong số 10 đáp án có ngày 18 và 19 chỉ xuất hiện 1 lần nếu sinh nhật của C vào hai ngày này chắc chắn B đã biết=>Loại 19/5 và 18/6

Nếu C nói với A tháng sinh là tháng 5 hoặc tháng 6 thì sinh nhật của C chỉ có thể là 19/5 hoặc 18/6

và B biết đáp án nhưng A khẳng định B không biết=> C noí với A tháng sinh của cô ấy là 7 hoặc 8

=>Loại tiếp 15/5;16/5;17/6

+) Trong số những ngày còn lại từ 15 đến 17 tháng 7 hoặc 8 ngày 14 xuất hiện 2 lần

Nếu C nói với B sinh nhật cô ấy là ngày 14 thì B không thể biết đáp án nhưng B lại biết=>Loại tiếp 14/7 và 14/8

Vậy còn 16/7;15/8;17/8

Sau câu nói của B thì A cũng biết=>Ngày đó 16/7 vì nếu C nói sinh nhật cô ấy vào tháng 8 thì A không thể biết vì có tới 2 ngày trong tháng 8

Vậy sinh nhật của C là 16/7

28 tháng 6 2023

16/7

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Bài 1:

Ta nhớ công thức \(\sin^2x=\frac{1-\cos 2x}{2}\). Áp dụng vào bài toán:

\(F(x)=8\int \sin^2\left(x+\frac{\pi}{12}\right)dx=4\int \left [1-\cos \left(2x+\frac{\pi}{6}\right)\right]dx\)

\(\Leftrightarrow F(x)=4\int dx-4\int \cos \left(2x+\frac{\pi}{6}\right)dx=4x-2\int \cos (2x+\frac{\pi}{6})d(2x+\frac{\pi}{6})\)

\(\Leftrightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+c\)

Giải thích 1 chút: \(d(2x+\frac{\pi}{6})=(2x+\frac{\pi}{6})'dx=2dx\)

\(F(0)=8\Rightarrow -1+c=8\Rightarrow c=9\)

\(\Rightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+9\)

Câu 2:

Áp dụng nguyên hàm từng phần như bài bạn đã đăng:

\(\Rightarrow F(x)=-xe^{-x}-e^{-x}+c\)

\(F(0)=1\Rightarrow -1+c=1\Rightarrow c=2\)

\(\Rightarrow F(x)=-e^{-x}(x+1)+2\), tức B là đáp án đúng

NV
13 tháng 5 2019

\(g'\left(x\right)=-f'\left(3-x\right)=\left(x-3\right)\left(2-x\right)^2\left(\left(3-x\right)^2+9\left(3-x\right)+9\right)\)

Không cần quan tâm tới \(\left(2-x\right)^2\) do \(g'\left(x\right)\) ko đổi dấu khi đi qua điểm dừng này

\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\\left(3-x\right)^2+m\left(3-x\right)+9=0\left(1\right)\end{matrix}\right.\)

Để \(g\left(x\right)\) đồng biến trên \(\left(3;+\infty\right)\Rightarrow\left(1\right)\) vô nghiệm hoặc các nghiệm của (1) đều không lớn hơn 3

\(\left(1\right)\Leftrightarrow h\left(x\right)=x^2-\left(m+6\right)x+3m+18=0\)

\(\Delta=m^2-36\)

TH1: \(\Delta< 0\Rightarrow m^2-36< 0\Rightarrow-6< m< 6\)

TH2: \(\left\{{}\begin{matrix}\Delta\ge0\\h\left(3\right)>0\\\frac{m+6}{2}< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge6\\m\le-6\end{matrix}\right.\\9>0\\m< 0\end{matrix}\right.\) \(\Rightarrow m\le-6\)

Vậy \(m< 6\) thì \(g\left(x\right)\) đồng biến trên \(\left(3;+\infty\right)\Rightarrow\) có 5 giá trị nguyên dương

13 tháng 5 2019

A

1cho hàm số f(x)liên tục trên đoạn [0;10] va\(\int_0^{10}\) f(x)dx=7 và \(\int_2^6\) f(x)dx =3. Tính P=\(\int_0^2\) f(x)dx+\(\int_6^{10}\) f(x)dx A. P=7 B.P=-4 C.P=4 D.P=10 2 cho f(x) là một nguyên hàm của hàm số y =\(\frac{-1}{cos^2x}\) và f(x)=1. Khi đó , ta có F(x) là A -tanx B -tanx+1 C tanx+1 D tanx-1 3 Cho A=\(\) \(\int\)x^5.\(\sqrt{1+x^2}\) dx=at^7+bt^5+c^3+C, với t=\(\sqrt{1+x^2}\). Tính A=a-b-c? 4 Tích phân I=\(\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\)...
Đọc tiếp

1cho hàm số f(x)liên tục trên đoạn [0;10] va\(\int_0^{10}\) f(x)dx=7 và \(\int_2^6\) f(x)dx =3. Tính P=\(\int_0^2\) f(x)dx+\(\int_6^{10}\) f(x)dx

A. P=7 B.P=-4 C.P=4 D.P=10

2 cho f(x) là một nguyên hàm của hàm số y =\(\frac{-1}{cos^2x}\) và f(x)=1. Khi đó , ta có F(x) là

A -tanx B -tanx+1 C tanx+1 D tanx-1

3 Cho A=\(\) \(\int\)x^5.\(\sqrt{1+x^2}\) dx=at^7+bt^5+c^3+C, với t=\(\sqrt{1+x^2}\). Tính A=a-b-c?

4 Tích phân I=\(\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\) \(\frac{dx}{sin^2x}\) bằng

A 1 B 3 C 4 D 2

5 Cho I=\(\int_2^a\) \(\frac{2x-1}{1-x}\)dx, xác định a đề I=-4-ln3

6 diện tích hình phẳng giới hạn bởi các đường cong y=x^3 và y=x^5 bằng

7 Tính thể tích V của khối tròn xoay tạo thành khi ta cho miền phẳng D giới hạn bởi các đường y=sin, trục hoành,x=0, x=\(\frac{\pi}{2}\) quay quanh trục Ox

8 Mô đun của số phức z=\(\frac{z-17i}{5-i}\) có phần thực là

9 cho số phức z thỏa (1-3i)z=8+6i. Mô đun của z bằng

10 phần thực của phức z thỏa (1+i)^2.(2-i)z=8+i+(1+2i)z la

11 cho zố phức z=-1-2i. điểm biểu diễn của số phức z là

A diểm D B diểm B c điểm C D điểm A

3
NV
8 tháng 5 2020

7.

Thể tích:

\(V=\pi\int\limits^{\frac{\pi}{2}}_0sin^2xdx=\frac{\pi}{2}\int\limits^{\frac{\pi}{2}}_0\left(1-cos2x\right)dx=\frac{\pi}{2}\left(x-\frac{1}{2}sin2x\right)|^{\frac{\pi}{2}}_0=\frac{\pi^2}{4}\)

8.

\(z=\frac{z-17i}{5-i}\Leftrightarrow\left(5-i\right)z=z-17i\)

\(\Leftrightarrow z\left(i-4\right)=17i\Rightarrow z=\frac{17i}{i-4}=1-4i\)

Rốt cuộc câu này hỏi modun hay phần thực vậy ta?

Phần thực bằng 1

Môđun \(\left|z\right|=\sqrt{17}\)

9.

\(\left(1-3i\right)z=8+6i\Rightarrow z=\frac{8+6i}{1-3i}=-1+3i\)

\(\Rightarrow\left|z\right|=\sqrt{\left(-1\right)^2+3^2}=\sqrt{10}\)

10.

\(\left(1+i\right)^2\left(2-i\right)z=8+i+\left(1+2i\right)z\)

\(\Leftrightarrow2i\left(2-i\right)z-\left(1+2i\right)z=8+i\)

\(\Leftrightarrow\left(4i+2-1-2i\right)z=8+i\)

\(\Leftrightarrow z=\frac{8+i}{2i+1}=2-3i\)

Phần thực \(a=2\)

11.

Điểm biểu diễn số phức là điểm có tọa độ \(\left(-1;-2\right)\)

NV
8 tháng 5 2020

4.

\(I=\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{dx}{sin^2x}=-cotx|^{\frac{\pi}{2}}_{\frac{\pi}{4}}=1\)

5.

\(I=\int\limits^a_2\frac{2x-1}{1-x}dx=\int\limits^a_2\left(-2-\frac{1}{x-1}\right)dx=\left(-2x-ln\left|x-1\right|\right)|^a_2=-2a-ln\left|a-1\right|+4\)

\(\Rightarrow-2a+4-ln\left|a-1\right|=-4-ln3\Rightarrow a=4\)

6.

Phương trình hoành độ giao điểm:

\(x^3=x^5\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Diện tích hình phẳng:

\(S=\int\limits^0_{-1}\left(x^5-x^3\right)dx+\int\limits^1_0\left(x^3-x^5\right)dx=\frac{1}{6}\)

1 tập nghiệm bất phương trình e^2x+e^x-6<0 là A (-3;2) B\(\left(-\infty;2\right)\) C\(\left(-\infty;ln2\right)\) D \(\left(ln2;+\infty\right)\) 2 Trong không gian, cho tam giác ABC vuông tại AC=3a và BC=5a. Khi quay quanh tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó là 3 cho \(\int_1^3\) f(x)dx=4. Tính I = \(\int_1^0\frac{f\left(\sqrt{x}\right)}{\sqrt{x}}dx\) A.4 B.8 C.2 D.6 4 cho hai số phức...
Đọc tiếp

1 tập nghiệm bất phương trình e^2x+e^x-6<0 là

A (-3;2) B\(\left(-\infty;2\right)\) C\(\left(-\infty;ln2\right)\) D \(\left(ln2;+\infty\right)\)

2 Trong không gian, cho tam giác ABC vuông tại AC=3a và BC=5a. Khi quay quanh tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó là

3 cho \(\int_1^3\) f(x)dx=4. Tính I = \(\int_1^0\frac{f\left(\sqrt{x}\right)}{\sqrt{x}}dx\)

A.4 B.8 C.2 D.6

4 cho hai số phức \(z_1\) =2+i và \(z_2\) =-3+i . Phần ảo của số phức w= \(z_1z_2+2i\)

A.-1 B.3 C.1 D.7

5 gọi z1,z2 là hai nghiệm phức của pt \(z^2+4z+5=0\) trong đó z2 là nghiệm phức có phẩn ảo dương. Mô đun của số phúc w=\(z_1-2z_2\)

6 rong ko gian với hệ tọa độ oxyz. cho hai điểm A(0;1;1) ,B(1;3;2). Viết phương trình của mặt phẳng(P) đi qua A và vuông góc với đường thẳng AB

A :x+2y+z-9=0 B x+4y+3z-7=0 C x+2y+z-3=0 D y+z-2=0

7 Có 9 chiếc ghế dc kê thanh một hàng ngang. xếp ngẫu nhiên 9 học sinh trong đó có 3 hs nam và 6 hs nữ ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một hs,.Xác suất để các học sinh nam nào ngồi cạnh nhau là

8 Cho a>0,b>0 thỏa mãn \(a^2+9b^2=10ab\) .Khẳng định nào sau đây đúng

A log(a+1)+logb=1 B \(log\frac{a+3b}{4}=\frac{loga+logb}{2}\) C 3log(a+3b)=log a-log b D 2log(a+3b)=2log a+log b

9 trong ko gian oxyz điểm M (3;0;-2) nằm trên mp nào sau đây

A(oxy) B(oyz) C x=0 D(oxz)

3
NV
8 tháng 6 2020

8.

\(a^2+9b^2=10ab\Leftrightarrow a^2+6ab+9b^2=16ab\)

\(\Leftrightarrow\left(a+3b\right)^2=16ab\)

\(\Rightarrow log\left(a+3b\right)^2=log\left(16ab\right)\)

\(\Rightarrow2log\left(a+3b\right)=log16+loga+logb\)

\(\Leftrightarrow log\left(a+3b\right)-\frac{log4^2}{2}=\frac{loga+logb}{2}\)

\(\Leftrightarrow log\left(a+3b\right)-log4=\frac{loga+logb}{2}\)

\(\Leftrightarrow log\frac{a+3b}{4}=\frac{loga+logb}{2}\)

9.

Tung độ của điểm M bằng 0 nên nó nằm trên mặt phẳng Oxz

NV
8 tháng 6 2020

5.

\(z^2+4z+5=0\Leftrightarrow\left(z+2\right)^2=-1=i^2\)

\(\Rightarrow\left[{}\begin{matrix}z+2=i\\z+2=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z_2=-2+i\\z_1=-2-i\end{matrix}\right.\)

\(\Rightarrow w=z_1-2z_2=2-3i\)

\(\Rightarrow\left|w\right|=\sqrt{2^2+\left(-3\right)^2}=\sqrt{13}\)

6.

\(\overrightarrow{AB}=\left(1;2;1\right)\Rightarrow\) mặt phẳng (P) nhận (1;2;1) là 1 vtpt

Pt (P): \(1\left(x-0\right)+2\left(y-1\right)+1\left(z-1\right)=0\)

\(\Leftrightarrow x+2y+z-3=0\)

7.

Đề chắc ghi sai, có phải đề đúng là xác suất để ko có học sinh nam nào ngồi cạnh nhau?

Xếp bất kì: có \(9!\) cách

Xếp 6 bạn nữ có \(6!\) cách, 6 bạn nữ này tạo ra 7 vị trí trống, xếp 3 bạn nam vào các vị trí trống đó có \(A_7^3\) cách

Xác suất: \(P=\frac{6!.A_7^3}{9!}=\frac{5}{12}\)

1 cho \(\int f\left(x\right)dx=F\left(x\right)+C\). Khi đó a#0 ,a,b là hằng số ta có \(\int f\left(ax+b\right)dx\) là 2 gia trị m để hàm số F(x) = \(mx^3+\left(3m+2\right)x^2-4x+3\)là một nguyên hàm của hàm số f(x) = \(3x^2+10x-4\) là 3 họ nguyên hàm của hàm số f(x)= \(\left(x^2-3x\right)\left(x+1\right)\)là 4 nguyên hàm của hàm số f(x) \(x^3-\frac{3}{x^2}+2^x\) 5 cho hàm số f(x) =\(e^{2019x}\) . Nguyên hàm \(\int f\left(x\right)dx\)là 6 tìm họ nguyên hàm...
Đọc tiếp

1 cho \(\int f\left(x\right)dx=F\left(x\right)+C\). Khi đó a#0 ,a,b là hằng số ta có \(\int f\left(ax+b\right)dx\)

2 gia trị m để hàm số F(x) = \(mx^3+\left(3m+2\right)x^2-4x+3\)là một nguyên hàm của hàm số f(x) = \(3x^2+10x-4\)

3 họ nguyên hàm của hàm số f(x)= \(\left(x^2-3x\right)\left(x+1\right)\)

4 nguyên hàm của hàm số f(x) \(x^3-\frac{3}{x^2}+2^x\)

5 cho hàm số f(x) =\(e^{2019x}\) . Nguyên hàm \(\int f\left(x\right)dx\)

6 tìm họ nguyên hàm của hàm số f(x) =sin2018x là

7 tìm họ nguyên hàm của hàm số f(x)=\(\frac{x^2-x+1}{x-1}\)

8 cho hàm số f(x)=\(\left(2x+1\right)^3\) có một nguyên hàm F(x) thỏa F\(\left(\frac{1}{2}\right)=4\). Tính P =F\(\left(\frac{3}{2}\right)\)

9 hãy xác định hàm số F (x) = ax^3+bx^2+cx+1. Biết F (x) là một nguyên hàm của hàm số y=f(x) thỏa mãn f(1)=2,f(2=3 và f(3)=4

A F(x)= \(x^3+\frac{1}{2}x^2+x+1\)

B F (x) =\(\frac{1}{3}x^3+x^2+2x+1\)

C F(x)=\(\frac{1}{2}x^2+x+1\)

D F(x)=\(\frac{1}{3}x^3+\frac{1}{2}x^2+x+1\)

10 Cho F (x) là một nguyên hàm của y =\(\left(\frac{x-2}{x^3}\right)\). Nếu F (-1)=3 thì F(x) bằng

3
NV
24 tháng 6 2020

9.

\(f\left(x\right)=F'\left(x\right)=3ax^2+2bx+c\)

\(\left\{{}\begin{matrix}f\left(1\right)=2\\f\left(2\right)=3\\f\left(3\right)=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a.1+2b.1+c=2\\3a.2^2+2b.2+c=3\\3a.3^2+2b.3+c=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a+2b+c=2\\12a+4b+c=3\\27a+6b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=\frac{1}{2}\\c=1\end{matrix}\right.\)

\(\Rightarrow F\left(x\right)=\frac{1}{2}x^2+x+1\)

10.

\(F\left(x\right)=\int\frac{x-2}{x^3}dx=\int\left(\frac{1}{x^2}-\frac{2}{x^3}\right)dx=\int\left(x^{-2}-2x^{-3}\right)dx\)

\(=-1.x^{-1}+x^{-2}+C=-\frac{1}{x}+\frac{1}{x^2}+C\)

\(F\left(-1\right)=3\Leftrightarrow1+1+C=3\Rightarrow C=1\)

\(\Rightarrow F\left(x\right)=-\frac{1}{x}+\frac{1}{x^2}+1\)

NV
24 tháng 6 2020

4.

\(\int\left(x^3-\frac{3}{x^2}+2^x\right)dx=\frac{1}{4}x^4-\frac{3}{x}+\frac{2^x}{ln2}+C\)

5.

\(\int e^{2019x}dx=\frac{1}{2019}\int e^{2019x}d\left(2019x\right)=\frac{1}{2019}e^{2019x}+C\)

6.

\(\int sin2018x.dx=\frac{1}{2018}\int sin2018x.d\left(2018x\right)=-\frac{1}{2018}cos2018x+C\)

7.

\(\int\frac{x^2-x+1}{x-1}dx=\int\left(\frac{x\left(x-1\right)}{x-1}+\frac{1}{x-1}\right)dx=\int\left(x+\frac{1}{x-1}\right)dx=\frac{1}{2}x^2+ln\left|x-1\right|+C\)

8.

\(F\left(x\right)=\int\left(2x+1\right)^3dx=\frac{1}{2}\int\left(2x+1\right)^3d\left(2x+1\right)=\frac{1}{8}\left(2x+1\right)^4+C\)

\(F\left(\frac{1}{2}\right)=4\Leftrightarrow\frac{1}{8}\left(2.\frac{1}{2}+1\right)^4+C=4\Rightarrow C=2\)

\(\Rightarrow F\left(x\right)=\frac{1}{8}\left(2x+1\right)^4+2\Rightarrow F\left(\frac{3}{2}\right)=\frac{1}{8}4^4+2=34\)