Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Năng lượng toàn phần trong quá trình phản ứng hạt nhân xảy ra được bảo toàn
Lực lorenxo tác dụng lên hạt α khi nó chuyển động trong từ trường
Đáp án B
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Phản ứng tỏa năng lượng nên \(W_{tỏa} = (m_t-m_s)c^2 = 2K_{He}-(K_p+K_{Li})\)
=> \( 2K_{He} = (m_p+m_{Li}-2m_{He})c^2+ K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,6 MeV = 9,6.10^6.1,6.10^{-19}J.\)
=> \(v = \sqrt{\frac{2K_{He}}{m_{He}}} = \sqrt{\frac{2.9,6.10^6.1,6.10^{-19}}{4,0015.1,66.10^{-27}}} = 21505282,4 m/s.\)
Q=(mt-ms).931 MeV= -1.21 MeV
mà Q=Ks-Kt >> -1.21=Kp+Kx-4 >> Kp+Kx=2.79
>> 1/2MxVx+1/2MpVp=2.79
mà Vp=Vx >> 1/2Vp(Mp+Mx)=2.79 >> Vp=0.5.10^7m/s >> Kp=0.1306MeV
\(_1^1p + _4^9Be \rightarrow _2^4He+ _3^6 Li\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{Li}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{Li}K_{Li} = 2m_{He}K_{He}+ 2m_pK_p\)
=> \(K_{Li} = \frac{4K_{He}+K_p}{6}=3,58MeV\)
=> \(v = \sqrt{\frac{2.K_{Li}}{m_{Li}}} = \sqrt{\frac{2.3,58.10^6.1,6.10^{-19}}{6.1,66055.10^{-27}}} = 10,7.10^6 m/s.\)
\(_1^1p + _4^9Be \rightarrow _2^4He + _3^6X\)
Áp dụng định luật bảo toàn động lượng \(\overrightarrow P_p=\overrightarrow P_{He}+ \overrightarrow P_{X} \) (do hạt Be đứng yên)
Dựa vào hình vẽ ta có \(P_{p}^2+ P_{He}^2 = P_X^2\)
=> \(2m_{p}K_{p}+2m_{He} K_{He} = 2m_{X}K_{X}. \)
=> \(K_{p}+4K_{He} = 6K_{X} => K_X = 6MeV.\)