K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}=\left\{\left[\left(\frac{b}{a}\right)^{-1}\left(\frac{b}{a}\right)^{\frac{1}{5}}\right]^{\frac{1}{7}}\right\}^{\frac{35}{4}}=\left[\left(\frac{b}{a}\right)^{-\frac{4}{5}}\right]=\frac{a}{b}\)

10 tháng 5 2016

\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}=\sqrt[4]{\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{35}}=\sqrt[4]{\left(\frac{a}{b}\sqrt[5]{\frac{b}{a}}\right)^5}\)

\(=\sqrt[4]{\left(\frac{a}{b}\right)^5.\frac{b}{a}}=\sqrt[4]{\left(\frac{a}{b}\right)^4}=\frac{a}{b}\)

11 tháng 5 2016

\(M=\frac{\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^2}{\sqrt[3]{ab}}:\left(2+\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\right)=\frac{\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^2}{\sqrt[3]{ab}}:\frac{2\sqrt[3]{ab}+\left(\sqrt[3]{a}\right)^2+\left(\sqrt[3]{a}\right)^2}{\sqrt[3]{ab}}\)

    \(=\frac{\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^2}{\sqrt[3]{ab}}-\frac{\sqrt[3]{ab}}{\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^2}=1\)

10 tháng 5 2016

\(F=\left(1-2\sqrt{\frac{a}{b}}+\frac{a}{b}\right):\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2=\left(1-\sqrt{\frac{a}{b}}\right)^2:\left(\sqrt{a}-\sqrt{b}\right)^2\)

                                                        \(=\frac{\left(\sqrt{b}-\sqrt{a}\right)^2}{b}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{1}{b}\)

10 tháng 5 2016

ĐK: \(ab\ge0;b\ne0\)

\(F=\left(1-2\sqrt{\frac{a}{b}}+\frac{a}{b}\right):\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2\)

\(=\left(\sqrt{\frac{a}{b}}-1\right)^2:\left(\sqrt{a}-\sqrt{b}\right)^2=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{b}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{1}{b}\)

11 tháng 5 2016

\(=\left(\sqrt{a}-\sqrt{b}\right)^2:\left(\sqrt{b}-\frac{b}{\sqrt{a}}\right)^2=\left(\sqrt{a}-\sqrt{b}\right)^2:\left[\frac{\sqrt{b}}{\sqrt{a}}\left(\sqrt{a}-\sqrt{b}\right)\right]^2\)

\(=\left(\sqrt{a}-\sqrt{b}\right)^2:\left[\frac{\sqrt{b}}{\sqrt{a}}\left(\sqrt{a}-\sqrt{b}\right)\right]^2\)

 \(=\left(\sqrt{a}-\sqrt{b}\right)^2.\frac{a}{b\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{a}{b}\)

26 tháng 3 2016

a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)

b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)

c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)

                              \(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)

d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)

        \(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)

        \(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)

        

11 tháng 5 2016

\(M=lg\left|\log_{\frac{1}{a^3}}\sqrt[5]{a\sqrt{a}}\right|=lg\left|\log_{\frac{1}{a^3}}\sqrt[5]{a.a^{\frac{1}{2}}}\right|=lg\left|\log_{\frac{1}{a^3}}\left(a^{\frac{3}{2}}\right)^{\frac{1}{5}}\right|=lg\left|\log_{a^{-3}}a^{\frac{3}{10}}\right|=lg\left|-\frac{1}{10}=lg\frac{1}{10}=-1\right|\)

26 tháng 3 2016

a) \(A=\frac{a^{\frac{5}{2}}\left(a^{\frac{1}{2}}-a^{\frac{-3}{2}}\right)}{a^{\frac{1}{2}}\left(a^{\frac{-1}{2}}-a^{\frac{3}{2}}\right)}=\frac{a^3-a}{1-a^2}=-a\)

Do đó : \(A=-\left(\pi-3\sqrt{2}\right)=3\sqrt{2}-\pi\)

b) Rút gọn B ta có :

\(B=\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)\left[\left(a^{\frac{1}{3}}\right)^2+\left(b^{\frac{1}{3}}\right)^2\right]=\left(a^{\frac{1}{3}}\right)^3+\left(b^{\frac{1}{3}}\right)^3=a+b\)

Do đó :

\(B=\left(7-\sqrt{2}\right)+\left(\sqrt{2}+3\right)=10\)

11 tháng 5 2016

\(=\left[\frac{\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)\left(a+a^{\frac{1}{2}}b^{\frac{1}{2}}+b\right)}{a^{\frac{1}{2}}-b^{\frac{1}{2}}}+a^{\frac{1}{2}}b^{\frac{1}{2}}\right]\left[\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)}\right]^2\)

\(=\frac{a+2a^{\frac{1}{2}}b^{\frac{1}{2}}+b}{\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^2}=\frac{\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^2}{\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^2}=1\)

11 tháng 5 2016

\(I=\frac{a^{\frac{4}{3}}-8a^{\frac{2}{3}}b}{a^{\frac{2}{3}}+2\sqrt[3]{ab}+4b^{\frac{2}{3}}}\left(1-2\sqrt[3]{\frac{b}{a}}\right)^{-1}-a^{\frac{2}{3}}=\frac{a^{\frac{1}{3}}\left(a-8b\right)}{a^{\frac{2}{3}}+2a^{\frac{1}{3}}.b^{\frac{1}{3}}+4b^{\frac{2}{3}}}\left(\frac{\sqrt[3]{a}-2\sqrt[3]{b}}{\sqrt[3]{a}}\right)^{-1}-a^{\frac{2}{3}}\)

  \(=\frac{\sqrt[3]{a}\left[\left(\sqrt[3]{a}\right)^3-\left(2\sqrt[3]{b}\right)^3\right]}{a^{\frac{2}{3}}+2\sqrt[3]{ab}+4b^{\frac{2}{3}}}.\frac{\sqrt[3]{a}}{\sqrt[3]{a}-2\sqrt[3]{b}}-a^{\frac{2}{3}}\)

  \(=\frac{\left(\sqrt[3]{a}\right)^2\left(\sqrt[3]{a}-2\sqrt[3]{b}\right)\left[\left(\sqrt[3]{a}\right)^2+2\sqrt[3]{ab}+\left(2\sqrt[3]{b}\right)^2\right]}{\left(\sqrt[3]{a}-a\sqrt[3]{b}\right)\left[\left(\sqrt[3]{a}\right)^2+2\sqrt[3]{ab}+\left(2\sqrt[3]{b}\right)^2\right]}-a^{\frac{2}{3}}=a^{\frac{2}{3}}-a^{\frac{2}{3}}=0\)