K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

Đoạn mạch chứa một cuộn cảm thuần L; đặt vào hai đầu đoạn mạch điện áp tức thời u = U0cos ωt (V) thì cường độ hiệu dụng trong mạch là bao nhiêu ?A. U0Lω

B. U02Lω

C. U0Lω

D.

7 tháng 6 2017

Đáp án: B

7 tháng 6 2017

Đáp án đúng: D

30 tháng 10 2015

Do \(u_L\) vuông pha với \(i\)nên \(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)

Khi u cực đại thì \(u=U_0\), thế vào biểu thức trên ta tìm đc i = 0.

30 tháng 10 2015

22 tháng 4 2017

Chọn B

I = U Z L = U 0 L ω 2

17 tháng 11 2015

Mạch chỉ có điện trở thuần thì u cùng pha với i.

Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)

Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)

\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)

\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.

1 tháng 2 2017

*) Từ hai biểu thức dòng điện, rút ra 2 kết luận sau: khi \(\omega\) thay đổi thì

+) I cực đại tăng \(\frac{I_2}{I_1}=\sqrt{\frac{3}{2}}\Rightarrow \frac{Z_1}{Z_2}=\sqrt{\frac{3}{2}}\)

+) Pha ban đầu của i giảm 1 góc bằng: \(\frac{\pi}{3}-\left(-\frac{\pi}{12}\right)=\frac{5\pi}{12}=75^0\)

tức là hai véc tơ biểu diễn Z1 và Z2 lệch nhau 75 độ, trong đó Z2 ở vị trí cao hơn

*) Dựng giản đồ véc-tơ:

Z1 Z2 O A B H R

Trong đó: \(\widehat{AOB}=75^0\);

Đặt ngay: \(Z_1=OB=\sqrt{\frac{3}{2}}\Rightarrow Z_2=1\)

Xét tam giác OAB có \(\widehat{AOB}=75^0;OA=1;OB=\sqrt{\frac{3}{2}}\) và đường cao OH.

Với trình độ của bạn thì thừa sức tính ngay được: \(OH=\frac{\sqrt{3}}{2}\)

\(\Rightarrow R=OH=\frac{\sqrt{3}}{2}\)

*) Tính \(Z_L,Z_C\):

\(Z_1^2=R^2+\left(Z_L-Z_C\right)^2;\left(Z_L< Z_C\right)\)

\(Z_2^2=R^2+\left(\sqrt{3}Z_L-\frac{Z_C}{\sqrt{3}}\right)^2\)

Thay số vào rồi giải hệ 2 ẩn bậc nhất, tìm được: \(Z_L=\frac{\sqrt{3}}{2};Z_C=\sqrt{3}\)

*) Tính

\(\frac{R^2L}{C}=\frac{R^2\cdot\left(L\omega_1\right)}{C\omega_1}=R^2Z_LZ_C\\ =\left(\frac{\sqrt{3}}{2}\right)^2\cdot\frac{\sqrt{3}}{2}\cdot\sqrt{3}=\frac{9}{4}\)

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Ra $\frac{1}{2}$ ông ạ

Thầy tôi bảo có cách dùng giản đồ vector ngắn kinh khủng mà chưa ngộ ra.

11 tháng 12 2015

Độ lêch pha giữa u và i là: \(\Delta \varphi = \varphi_u - \varphi_i = \frac{\pi}{6} - \frac{-\pi}{3} = \frac{\pi}{2}.\)

=> u sớm pha hơn i một góc \(\pi/2\) tức là mạch AB chứa cuộn dây thuần cảm. Còn các trường hợp khác thì không có u sớm pha hơn i một góc 90 độ.

Chọn đáp án. A.

20 tháng 8 2018

Chọn đáp án B.

Vì Giải bài tập Vật Lý 12 | Giải Lý 12

9 tháng 4 2015

Áp dụng: Hai dao động điều hòa x1 vuông pha với x2 thì \(\left(\frac{x_1}{x_{1max}}\right)^2+\left(\frac{x_2}{x_{2max}}\right)^2=1\)

Nên: Do uR vuông pha với u\(\Rightarrow\left(\frac{u_R}{U_{0R}}\right)^2+\left(\frac{u_L}{U_{0L}}\right)^2=1\)

Ở thời điểm t2: \(\left(\frac{0}{U_{0R}}\right)^2+\left(\frac{20}{U_{0L}}\right)^2=1\Rightarrow U_{0L}=20V\) , tương tự: \(U_{0C}=60V\)

Ở thời điểm t1: \(\left(\frac{15}{U_{0R}}\right)^2+\left(\frac{-10\sqrt{3}}{20}\right)^2=1\Rightarrow U_{0R}=30V\)

Vậy: \(U_0=\sqrt{U_{0R}^2+\left(U_{0L}-U_{0C}\right)^2}=\sqrt{30^2+\left(20-60\right)^2}=50V\)

\(\Rightarrow U=\frac{U_0}{\sqrt{2}}=25\sqrt{2}V\)

Em có thể xem thêm lý thuyết và bài tập tự luyện phần điện xoay chiều tại đây: http://edu.olm.vn/on-tap/vat-ly/chuyen-de.52/%C4%90i%E1%BB%87n-xoay-chi%E1%BB%81u

12 tháng 10 2017

Cường độ dòng hiệu dụng: \(I=\dfrac{U}{Z}\)

Ta có: \(I_1=I_2\)

\(\Rightarrow \dfrac{U}{Z_1}=\dfrac{U}{Z_2}\)

\(\Rightarrow Z_1=Z_2\)

\(\Rightarrow \sqrt{R^2+(Z_{L1}-Z_{C1})^2}=\Rightarrow \sqrt{R^2+(Z_{L2}-Z_{C2})^2}\)

\(\Rightarrow Z_{L1}-Z_{C1}=Z_{C2}-Z_{L2}\)

\(\Rightarrow Z_{L1}+Z_{L2}=Z_{C1}+Z_{C2}\)

\(\Rightarrow \omega_1.L+\omega_2.L=\dfrac{1}{\omega_1C}+\dfrac{1}{\omega_2C}\)

\(\Rightarrow (\omega_1+\omega_2)L=\dfrac{1}{C}.\dfrac{\omega_1+\omega_2}{\omega_1.\omega_2}\)

\(\Rightarrow \omega_1.\omega_2=\dfrac{1}{LC}\)

Chọn C