tim GTNN: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có

a+b-c>0; b+c-a>0; b+c-a>0

áp dụng BĐT \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\)\(\frac{4}{x+y}\) ta có:

\(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)=\(\ge\)\(\frac{4}{a+b-c+b+c-a}\)=\(\frac{4}{2b}\)=\(\frac{2}{b}\)(1)

\(\frac{1}{a+b-c}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{4}{a+b-c+c+a-b}\)=\(\frac{4}{2a}\)=\(\frac{2}{a}\)(2)

\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{4}{b+c-a+c+a-b}\)=\(\frac{4}{2c}\)=\(\frac{2}{c}\)(3)

cộng vế với vế của(1);(2) và (3) ta có:

\(\frac{2}{a+b-c}\)+\(\frac{2}{b+c-a}\)+\(\frac{2}{c+a-b}\)\(\ge\)\(\frac{2}{b}\)+\(\frac{2}{a}\)+\(\frac{2}{c}\)

<=>\(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)

dấu = xảy ra khi a=b=c

18 tháng 10 2021

câu D là \(\left(x_o\right)^2+3=4x_o\)

31 tháng 8 2016

\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-\left(x+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-2\sqrt{x}-\sqrt{x}+2-x-\sqrt{x}-3\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=-\frac{\sqrt{x}+6}{\sqrt{x}-2}\)

 Câu hỏi 1 (1 điểm)Cho hàm số bậc nhất: $y=f(x)=-5x+10$y=ƒ (x)=−5x+10 Hệ số a bằng là hàm số đồng biếnlà hàm số nghịch biến Câu hỏi 2 (1 điểm)Cho hàm số bậc nhất: $y=(4+b).x-3$y=(4+b).x−3Giá trị của $b$b để hàm số đồng biến là: b>4b<4b>-4b<-4Câu hỏi 3 (1 điểm)Cho hàm số bậc nhất: $y=f(x)=-7x+b$y=ƒ (x)=−7x+b Biết rằng khi $x=1$x=1 thì $y=-12$y=−12Hệ số b bằng  Câu hỏi 4 (1...
Đọc tiếp

 

olm.pngCâu hỏi 1 (1 điểm)

Cho hàm số bậc nhất: $y=f(x)=-5x+10$y=ƒ (x)=5x+10 
Hệ số a bằng 

là hàm số đồng biến
là hàm số nghịch biến
 
olm.pngCâu hỏi 2 (1 điểm)

Cho hàm số bậc nhất: $y=(4+b).x-3$y=(4+b).x3
Giá trị của $b$b để hàm số đồng biến là: 

b>4
b<4
b>-4
b<-4
olm.pngCâu hỏi 3 (1 điểm)

Cho hàm số bậc nhất: $y=f(x)=-7x+b$y=ƒ (x)=7x+b 
Biết rằng khi $x=1$x=1 thì $y=-12$y=12
Hệ số b bằng 

 
olm.pngCâu hỏi 4 (1 điểm)

Biết rằng đồ thị hàm số $y=9+ax$y=9+ax đi qua điểm $M(2;-5)$M(2;5)
Hệ số a bằng 

olm.pngCâu hỏi 5 (1 điểm)

Tìm giá trị của hàm số y = f(x) = -5x + 8 khi x = 7.

 

f(7) = 

 
olm.pngCâu hỏi 6 (1 điểm)

Tìm điều kiện để đồ thị của hai hàm bậc nhất $y=(6m+4)x+5n+7$y=(6m+4)x+5n+7 và $y=(-7-8m)x-9$y=(78m)x9 là hai đường thẳng cắt nhau.

$m\ne\frac{-11}{14};m\ne\frac{-7}{4}$m1114 ;m74 

$m\ne\frac{-11}{14}$m1114 

$n=\frac{5}{7}$n=57 

$n\ne\frac{5}{7}$n57 

olm.pngCâu hỏi 7 (1 điểm)

Cho hàm số y = (-3 + 3m)x + 5m - 4. Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 6 khi m = 

 
olm.pngCâu hỏi 8 (1 điểm)

Trên cùng một đường tròn lấy hai dây EF và PQ. Biết EF lớn hơn PQ. Hãy so sánh khoảng cách từ tâm đường tròn đến hai dây đó ?

Khoảng cách từ tâm đến EF < Khoảng cách từ tâm đến PQ
Khoảng cách từ tâm đến EF > Khoảng cách từ tâm đến PQ
Khoảng cách từ tâm đến EF = Khoảng cách từ tâm đến PQ
olm.pngCâu hỏi 9 (1 điểm)

Cho đường tròn tâm (O; 6cm). Gọi A là một điểm trên đường tròn (O). Dây BC vuông góc với OA tại trung điểm của OA. Tính độ dài dây cung BC.

BC=3\sqrt{3}cmBC=33cm
BC=5\sqrt{3}cmBC=53cm
BC=4\sqrt{3}cmBC=43cm
BC=6\sqrt{3}cmBC=63cm
 
olm.pngCâu hỏi 10 (1 điểm)

Cho hình vuông ABCD, O là giao điểm hai đường chéo, OA=\sqrt{3}\left(cm\right)OA=3(cm).  Vẽ đường tròn (B ; 2cm). Khi đó khẳng định nào dưới đây là đúng?

A, D, C, nằm trong (B); O nằm ngoài (B).
O nằm trong (B); A, C, D nằm ngoài (B).
O nằm trên (B); A, C, D nằm trong (B).
O nằm trên (B); A, C, D nằm ngoài (B).
1
17 tháng 9 2018

mong cac ban giup do