Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vẽ hình vào nhé
a) Xét tg DEM có ME=DE( gt)
DI = IE( gt)
=> DI là dg tb tg DEM => DI//MD; DI =1/2 MD
Xét tg DEN có DF=FN(gt)
DI = IE(gt)
=> FI là dg tb tg DEN=> FI//EN ; FI=1/2EN
Mà NE = MP(gt)=> 1/2NE=1/2MP=>DI =FI=> tg DFI cân tại I
Bạn sửa lại b thành I nhé( trong đề bài ý)
b) Ta có : ID// MD( ID là dg tb tg DEM)
=> IDN=DME. (1)
Ta có FI// EN( FI là dg tb tg DEN)=> IFD=FDN(slt)
Mà IDF+FDN= IDN. (2)
Ta lại có IFD=IDF( tg DIF cân tại I) (3)
=> Từ (1) (2) (3) suy ra MNP= 2 IDF
a ) Xét ◇DENF có :
Góc N = Góc F = Ê = 90°
\(\Rightarrow\)◇DENF là hình chữ nhật
b ) Trong \(\Delta\)MNP có : ND là đường trung tuyến
\(\Rightarrow\)ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )
Xét \(\Delta\)NDF và \(\Delta\)PDF có :
- ND = DP ( cmt )
- Góc NFD = Góc PFD ( = 90° )
- DF : cạnh chung
\(\Rightarrow\)\(\Delta\)NDF = \(\Delta\)PDF ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\)NF = PF ( 2 cạnh tương ứng )
\(\Rightarrow\)F là trung điểm NP
a) Xét tứ giác NEDF có +) \(\widehat{ENF}=90^0\)(tam giác MNP vuông tại N)
+) \(\widehat{DFN}=90^0\)(DF vuông góc NP)
+) \(\widehat{DEN}=90^0\)(DE vuông góc MN)
\(\Rightarrow\)tứ giác NEDF là hình chữ nhật
b) Xét \(\Delta DFN\)và \(\Delta DFP\)có:
DF : cạnh chung
DN = DP ( Do ND là trung tuyến của tam giác vuông MNP)
Do đó \(\Delta DFN\)\(=\Delta DFP\left(ch-cgv\right)\)
\(\Rightarrow NF=PF\)
Suy ra F là trung điểm của NP (đpcm)