Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
xét tam giác mnp và tam giác dfp có
góc nmp = góc fdp (=90 độ)
chung góc p
=> tam giác mnp đồng dạng tam giác dfp (gg)
câu b
xét tam giác mnp và tam giác dne có
góc nmp = góc nde (=90 độ)
chung góc n
=> tam giác mnp đồng dạng tam giác dne (gg)
=> \(\dfrac{ne}{np}=\dfrac{dn}{mn}\)
=> ne . mn = nd . np
(lưu ý: hình vẽ chỉ mang tính chất minh hoạ :) )
chúc may mắn, 2 câu còn lại để mình xem, lâu ko làm lại dạng này
a ) Xét ◇DENF có :
Góc N = Góc F = Ê = 90°
\(\Rightarrow\)◇DENF là hình chữ nhật
b ) Trong \(\Delta\)MNP có : ND là đường trung tuyến
\(\Rightarrow\)ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )
Xét \(\Delta\)NDF và \(\Delta\)PDF có :
- ND = DP ( cmt )
- Góc NFD = Góc PFD ( = 90° )
- DF : cạnh chung
\(\Rightarrow\)\(\Delta\)NDF = \(\Delta\)PDF ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\)NF = PF ( 2 cạnh tương ứng )
\(\Rightarrow\)F là trung điểm NP
a) Xét tứ giác NEDF có +) \(\widehat{ENF}=90^0\)(tam giác MNP vuông tại N)
+) \(\widehat{DFN}=90^0\)(DF vuông góc NP)
+) \(\widehat{DEN}=90^0\)(DE vuông góc MN)
\(\Rightarrow\)tứ giác NEDF là hình chữ nhật
b) Xét \(\Delta DFN\)và \(\Delta DFP\)có:
DF : cạnh chung
DN = DP ( Do ND là trung tuyến của tam giác vuông MNP)
Do đó \(\Delta DFN\)\(=\Delta DFP\left(ch-cgv\right)\)
\(\Rightarrow NF=PF\)
Suy ra F là trung điểm của NP (đpcm)
cho tam giác MNP vuông tại M có MN=4cm;MP=3cm
a)tính đọ dài NP và so sánh các góc của tam giác MNP
b)Trên tia đối tia PM lấy A sao cho P là trung điểm của đoạn thẳng AM.QUa P dựng đường thẳng vuông góc với AM cắt AN tại C.C/m tam giác CPM=tam giác CPA
c)C/m CM=CN
d)GỌi G là giao điểm của MC và NP.TÍnh NG
e)Từ A vẽ đường thẳng vuông góc với NP tại D.Vẽ tia Nx là tia phân giác của góc MNP,vẽ tia Ay là tian pg của PAD,tia Ay cắt các tia NP,Nx,NM lần lượt tại E,H,K.C/m tam giác NEK cân
a: Xét ΔMNP có
D là trung điểm của MP
E là trung điểm của MN
Do đó: DE là đường trung bình của ΔMNP
Suy ra: DE//NP
hay PDEN là hình thang vuông
DE=NP/2=11(cm)