K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11

\(\dfrac{11}{24}\) : \(\dfrac{17}{23}\) - \(\dfrac{11}{24}\) : \(\dfrac{17}{11}\) - \(\dfrac{1}{12}\)

= - \(\dfrac{11}{24}\) x \(\dfrac{23}{17}\) - \(\dfrac{11}{24}\) x \(\)\(\dfrac{11}{17}\) - \(\dfrac{1}{12}\)

= - \(\dfrac{11}{24}\) x (\(\dfrac{23}{17}\) + \(\dfrac{11}{17}\)) - \(\dfrac{1}{12}\)

= - \(\dfrac{11}{24}\) x 2 - \(\dfrac{1}{12}\)

= - \(\dfrac{11}{12}\) - \(\dfrac{1}{12}\)

=- \(\dfrac{12}{12}\)

= - 1 

19 tháng 7 2023

 

Cô làm rồi em nhé:

https://olm.vn/cau-hoi/giup-em-voiii.8161766187032

29 tháng 10 2021

a: 12 khi phân tích thành nhân tử, có thừa số 3 là thừa số khác 2 và 5 ở trong nên 7/12 viết được dưới dạng số thập phân vô hạn tuần hoàn

11 tháng 7 2023

a) \(\dfrac{-12}{17}< \dfrac{x}{17}< \dfrac{-8}{17}\)

\(\Rightarrow-12< x< -8\)

\(\Rightarrow x\in\left\{-11;-10;-9\right\}\)

b) \(\dfrac{-1}{2}< x< \dfrac{5}{3}\)

\(\Rightarrow\dfrac{-3}{6}< x< \dfrac{10}{6}\)

\(\Rightarrow x\in\left\{\dfrac{-2}{6};\dfrac{-1}{6};0;\dfrac{1}{6};...;\dfrac{7}{6};\dfrac{8}{6};\dfrac{9}{6}\right\}\)

c) \(3,456< x\le7,89\)

\(\Rightarrow x\in\left\{3,456;3,457,3,458;...;7,89\right\}\)

d) \(5,82< \overline{5,8x0}< 8,845\)

\(\Rightarrow x\in\left\{3;4\right\}\)

e) \(32,82< \overline{3x,850}< 35,845\)

\(\Rightarrow x\in\left\{3;4\right\}\)

22 tháng 10 2021

a. Theo t/c của dãy tỉ số bằng nhau ta có:

x+y+z/2+3+5=40/10=4

=>x=4.2=8

=>y=4.3=12

=>z=4.5=20

 

 

22 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)

Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)

6 tháng 11

 a;\(\dfrac{17}{24}\)  < \(\dfrac{17}{34}\) ⇒ \(\dfrac{-17}{24}\) > \(\dfrac{-17}{34}\) = - \(\dfrac{1}{2}\)

  \(\dfrac{25}{31}\)  > \(\dfrac{25}{50}\) ⇒ - \(\dfrac{25}{31}\)  < \(\dfrac{-25}{50}\) = - \(\dfrac{1}{2}\) 

    Vậy - \(\dfrac{17}{34}\) > - \(\dfrac{25}{31}\) 

6 tháng 11

b;  \(\dfrac{27}{38}\) > \(\dfrac{27}{39}\) > \(\dfrac{25}{39}\) 

⇒ - \(\dfrac{27}{38}\) < - \(\dfrac{25}{39}\)  = \(\dfrac{-125}{195}\) 

Vậy - \(\dfrac{27}{38}\) < - \(\dfrac{125}{195}\)

 

23 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

20 tháng 10 2023

a: \(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\)

\(=\left(\dfrac{5}{9}-\dfrac{3}{12}\right)\cdot\dfrac{4}{3}+\dfrac{11}{3}\cdot\dfrac{4}{3}\)

\(=\left(\dfrac{5}{9}-\dfrac{1}{4}+\dfrac{11}{3}\right)\cdot\dfrac{4}{3}\)

\(=\dfrac{20-9+132}{36}\cdot\dfrac{4}{3}\)

\(=\dfrac{143}{3}\cdot\dfrac{1}{9}=\dfrac{143}{27}\)

b: \(\left(0.\left(3\right)+\dfrac{\left|-2\right|}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)

\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\cdot\dfrac{4}{5}-1\)

\(=\dfrac{4}{5}-1=-\dfrac{1}{5}\)

22 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

22 tháng 10 2021

a) Thay x + 3y - 2z vào biểu thức ta có:

 \(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(​​​​\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhua ta có:

\(​​​​\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = ​​​​\dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\) 

=\(​​​​\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(​​​​\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)

=\(​​​​\dfrac{36 + 9}{9}\) = 5

=> \(​​​​\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6

=>

=>

Vậy ...

(Bạn dựa theo cách này và lm những bài tiếp nhé!)

 

 

 

 

 

15 tháng 4 2022

\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\)            bậc : 3

\(B=2xy^2z-1\)                  bậc :4

15 tháng 4 2022

+ Thu gọn :

\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\)

\(B=2xy^2z-1\)

+ Bậc

Đa thức \(A\) có 4 hạng tử :

  \(4x^2y\) có bậc \(3\)

 \(\dfrac{14}{15}xy^2\) có bậc \(3\)

 \(-2xy\) có bậc \(2\)

 \(-\dfrac{2}{3}\) có bậc \(0\)

Đa thức \(B\)\(2\) hạng tử :

   \(2xy^2z\) có bậc \(4\)

   \(-1\) có bậc \(0\)