K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: a) ta có: \(\dfrac{50}{100}=\dfrac{1}{2};\dfrac{-\dfrac{4}{13}}{-\dfrac{8}{13}}=\dfrac{1}{2};\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{1}{2};\dfrac{-\dfrac{2}{17}}{-\dfrac{4}{17}}=\dfrac{1}{2}\) \(\dfrac{50}{100}=\dfrac{\dfrac{4}{13}}{\dfrac{8}{13}}=\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{\dfrac{2}{17}}{\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{1}{2}\) vậy...
Đọc tiếp

Bài 1:

a)

ta có: \(\dfrac{50}{100}=\dfrac{1}{2};\dfrac{-\dfrac{4}{13}}{-\dfrac{8}{13}}=\dfrac{1}{2};\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{1}{2};\dfrac{-\dfrac{2}{17}}{-\dfrac{4}{17}}=\dfrac{1}{2}\)

\(\dfrac{50}{100}=\dfrac{\dfrac{4}{13}}{\dfrac{8}{13}}=\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{\dfrac{2}{17}}{\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{1}{2}\)

vậy \(A=\dfrac{1}{2}\)

b)

\(B=\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\\ B=\dfrac{1}{19}-\dfrac{1}{19}+\dfrac{2}{29}-\dfrac{2}{29}+\dfrac{3}{39}-...-\dfrac{199}{1999}+\dfrac{200}{2009}\\ B=\dfrac{200}{2009}\)

Bài 2:

\(\dfrac{a}{b}=\dfrac{b}{3c}=\dfrac{c}{9a}=\dfrac{b+c}{3c+9a}\)

suy ra: \(b=\dfrac{3c\left(b+c\right)}{3c+9a}=\dfrac{3cb+3c^2}{3c+9a}=\dfrac{bc+c^2}{c+3a}\)

\(c=\dfrac{9a\left(b+c\right)}{3c+9a}=\dfrac{9ab+9ac}{3c+9a}=\dfrac{3ab+3ac}{c+3a}\)

giả sử b=c là đúng thì :\(\dfrac{bc+c^2}{c+3a}=\dfrac{3ab+3ac}{c+3a}\)

hay \(bc+c^2=3ab+3ac\\ \Leftrightarrow c^2+bc-3ab-3ac=0\)

\(\Leftrightarrow\left(b+c\right)\left(c-3a\right)=0\Rightarrow c-3a=0\Rightarrow c=3a\)

b) \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}+\dfrac{2}{2014.2016}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2016}\right)=\dfrac{2015}{4032}< 1\)

\(1< \dfrac{4}{3}\) nên \(\dfrac{2015}{4032}< \dfrac{4}{3}\)

hay \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}< \dfrac{4}{3}\)

bài 3:

a)\(\left(x-y\right)\left(x+y\right)=x^2-y^2-xy+xy=x^2-y^2\) (đpcm)

b) áp dụng BĐT tam giác, ta có:

\(a+b>c\Rightarrow a+b-c>0\\ b+c>a\Rightarrow b+c-a< 0\\ a+c>b\Rightarrow a-b+c>0\)

suy ra: \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< 0­\: ­\: ­\: ­\: ­\: ­\: \)

đồng thời \(abc>0\) với mọi a, b, c dương.

nên \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< abc\)

ko tìm dc dấu bằng xảy ra.

3
22 tháng 5 2017

hãy lướt qua và coi như ko có j -_-

22 tháng 5 2017

@Nguyễn Huy Tú

NV
25 tháng 6 2020

\(P=\frac{9a^2+b^2+1}{4}+\frac{1}{\left(6ab+1\right)^2}\ge\frac{6ab+1}{4}+\frac{1}{\left(6ab+1\right)^2}\)

\(P\ge\frac{6ab+1}{8}+\frac{6ab+1}{8}+\frac{1}{\left(6ab+1\right)^2}\ge3\sqrt[3]{\frac{\left(6ab+1\right)^2}{64\left(6ab+1\right)^2}}=\frac{3}{4}\)

\(P_{min}=\frac{3}{4}\) khi \(\left\{{}\begin{matrix}9a^2=b^2\\\frac{6ab+1}{8}=\frac{1}{\left(6ab+1\right)^2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=3a\\ab=\frac{1}{6}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{\sqrt{18}}\\b=\frac{3}{\sqrt{18}}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

1.

Trước hết bạn nhớ công thức:

$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)

Áp vào bài:

\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)

\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)

\(=1.\frac{1}{3}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

2.

\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)

\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)

\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)

\(=x+a\) 

Chọn C

24 tháng 1 2022

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.a.a\sqrt{3}=\dfrac{a^2\sqrt{3}}{2}\)

\(\Rightarrow V_{ABC}.A'B'C'=AA'.S_{ABC}=2a.\dfrac{a^2\sqrt{3}}{2}=a^3\sqrt{3}\)

Chọn A

3 tháng 9 2023

\(P=\dfrac{a}{2b+3c}+\dfrac{b}{2c+3a}+\dfrac{c}{2a+3b}\left(a;b;c>0\right)\)

\(\Leftrightarrow P=\dfrac{a^2}{2ab+3ac}+\dfrac{b^2}{2bc+3ab}+\dfrac{c^2}{2ac+3bc}\)

Áp dụng bất đẳng thức \(\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)

\(\Leftrightarrow P\ge\dfrac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}\left(1\right)\)

Theo bất đẳng thức Cauchy :

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\left(1\right)\Leftrightarrow P=\dfrac{a^2}{2ab+3ac}+\dfrac{b^2}{2bc+3ab}+\dfrac{c^2}{2ac+3bc}\ge\dfrac{ab+bc+ca+2\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}\)

\(\Leftrightarrow P\ge\dfrac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy \(Min\left(P\right)=\dfrac{3}{5}\left(tại.a=b=c\right)\)

4 tháng 9 2023

Bổ sung chứng minh Bất đẳng thức :

\(\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)

Theo BĐT Bunhiacopxki :

\(\left(\dfrac{a}{\sqrt[]{m}}\right)^2+\left(\dfrac{b}{\sqrt[]{n}}\right)^2+\left(\dfrac{c}{\sqrt[]{q}}\right)^2.\left[\left(\sqrt[]{m}\right)^2+\left(\sqrt[]{n}\right)^2+\left(\sqrt[]{q}\right)^2\right]\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

18 tháng 1 2018

Biến đổi: ʃ\(\int\dfrac{1dx}{cosx\dfrac{\sqrt{2}}{2}\left(cosx-sinx\right)}=\int\dfrac{\sqrt{2}dx}{cos^2x\left(1-tanx\right)}=\int\dfrac{\sqrt{2}d\left(tanx\right)}{1-tanx}=-\sqrt{2}\ln trituyetdoi\left(1-tanx\right)\)

https://www.youtube.com/channel/UCzeAuHrGhk8hUszunoNtayw

Luyện Thi THPT Quốc Gia miễn phí 100%