K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

\(S=\dfrac{4}{1.2.3}-\dfrac{1}{1.2.3}+\dfrac{6}{2.3.4}-\dfrac{1}{2.3.4}+...+\dfrac{4018}{2008.2009.2010}-\dfrac{1}{2008.2009.2010}\)

\(=\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2008.2010}\right)-\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2008.2009.2010}\right)\)

\(=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2007.2009}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2008.2010}\right)-\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{2008.2009.2010}\right)\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)-\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}-\dfrac{1}{2009.2010}\right)\)

\(=\left(1-\dfrac{1}{2009}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)-\left(\dfrac{1}{1.2}-\dfrac{1}{2009.2010}\right)\)

\(=1-\dfrac{1}{2009}-\dfrac{1}{2010}+\dfrac{1}{2009.2010}\)

\(=\dfrac{1}{2010}\left(\dfrac{1}{2009}-1\right)-\left(\dfrac{1}{2009}-1\right)\)

\(=\left(\dfrac{1}{2010}-1\right)\left(\dfrac{1}{2009}-1\right)=\dfrac{2009}{2010}.\dfrac{2008}{2009}=\dfrac{1004}{1005}\)

19 tháng 10 2018

Ta thấy 32-22=5; 42-32=7;......;20142-20132=(2014-2013)(2014+2013)=4017

=> VT=1/4+1/4-1/9+1/9-1/16+1/16-......-1/20132+1/20132-1/20142

=1/4+1/4-1/2014=1/2-1/20142<1/2<1

NV
14 tháng 12 2018

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{637}{2550}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)

\(\Leftrightarrow\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{637}{1275}\)

\(\Leftrightarrow\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{1}{2}-\dfrac{637}{1275}=\dfrac{1}{2550}\)

\(\Leftrightarrow\left(n+1\right)\left(n+2\right)=2550\)

\(\Leftrightarrow n^2+3n-2548=0\)

\(\Rightarrow n=49\)

14 tháng 12 2018

@Nguyễn Việt Lâm @Trần Trung Nguyên

17 tháng 1 2021

\(A=1.2.3...2018\left[\left(1+\dfrac{1}{2018}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2017}\right)+...+\left(\dfrac{1}{1009}+\dfrac{1}{1010}\right)\right]\)

\(A=1.2.3...2018.2019\left(\dfrac{1}{1.2018}+\dfrac{1}{2.2017}+...+\dfrac{1}{1009.1010}\right)\)

\(\dfrac{A}{2019}=1.2.3...2018\left(\dfrac{1}{1.2018}+\dfrac{1}{2.2017}+...+\dfrac{1}{1009.1010}\right)\).

Rõ ràng tích 1 . 2 ... 2018 chia hết cho các tích 1 . 2018; 2 . 2017; ...; 1009 . 1010; do đó \(\dfrac{A}{2019}\) là số tự nhiên.

Vậy A chia hết cho 2019.

AH
Akai Haruma
Giáo viên
19 tháng 10 2018

Lời giải:

\(A=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2011}{1.2.3...2012}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{2012-1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...2011}-\frac{1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2...2012}< 1\)

Ta có đpcm.

31 tháng 5 2017

ta có

\(\sqrt{\dfrac{7}{3}}+\sqrt{\dfrac{5}{3}}+1=\dfrac{\sqrt{7}+\sqrt{5}+\sqrt{3}}{\sqrt{3}}\)

tương tự ta có

\(\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{7}{5}}+1=\dfrac{\sqrt{3}+\sqrt{5}+\sqrt{7}}{\sqrt{5}}\)

\(\sqrt{\dfrac{3}{7}}+\sqrt{\dfrac{5}{7}}+1=\dfrac{\sqrt{3}+\sqrt{5}+\sqrt{7}}{\sqrt{7}}\)

\(A=\dfrac{\sqrt{\dfrac{5}{3}}}{\sqrt{\dfrac{7}{3}}+\sqrt{\dfrac{5}{3}}+1}+\dfrac{\sqrt{\dfrac{7}{5}}}{\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{7}{5}}+1}+\dfrac{\sqrt{\dfrac{3}{7}}}{\sqrt{\dfrac{5}{7}}+\sqrt{\dfrac{3}{7}}+1}\)

\(A=\dfrac{\sqrt{5}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}+\dfrac{\sqrt{7}}{\sqrt{7}+\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{3}}{\sqrt{7}+\sqrt{5}+\sqrt{3}}=1\)