Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2009.2009=2009(2008+1)=2009.2008+2009
2008+2010=2008(2009+1)=2008.2009+2008
=> 2009.2009>2008.2010
k hộ mình cái
B = 2008.2010 = (2009 - 1).(2009 + 1) = 2009.(2009 + 1) - 1.(2009 + 1) = 2009.2009 + 2009 - 2009 - 1 = 2009.2009 - 1 < A
Vậy A > B
Ta có: \(F=\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2008\cdot2010}\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
\(F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
\(F=2.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2008.2010}\right)\)
\(F=2.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(F=2.\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(F=1-\dfrac{1}{1005}=\dfrac{1004}{1005}\)
Ta có :
\(F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+..................+\dfrac{4}{2008.2010}\)
\(\Rightarrow F=2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+.............+\dfrac{2}{2008.2010}\right)\)
\(\Rightarrow F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..............+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(\Rightarrow F=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(\Rightarrow F=2.\dfrac{502}{1005}=\dfrac{1004}{1005}\)
\(F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+......+\dfrac{4}{2008.2010}\)
\(F=\dfrac{4}{2}\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+.....+\dfrac{1}{2008.2010}\right)\)
\(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+.....+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)\(F=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)\(F=2.\dfrac{502}{1005}\)
\(F=\dfrac{1004}{1005}\)
Trước hết ta chứng minh (a-1)(a+1) + 1 = a^2 (*)
Thật vậy VT = (a-1)(a+1)+1=(a-1)a + a-1 +1 = a^2-a+a=a^2 =VP
Áp dụng (*) ta có:
\(A=\dfrac{1\cdot3+2}{2^2}+\dfrac{2\cdot4+2}{3^2}+...+\dfrac{2009\cdot2011+2}{2010^2}\\ =\dfrac{2^2+1}{2^2}+\dfrac{3^2+1}{3^2}+...+\dfrac{2010^2+1}{2010^2}=2009+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2010^2}\\ < 2009+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2009\cdot2010}\\ =2009+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2009}-\dfrac{1}{2010}=2010-\dfrac{1}{2010}< 2020< 2011\)
a)\(\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2008\cdot2010}\)
\(=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2008\cdot2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
b)\(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}=\dfrac{3}{4}\)
a) gọi biểu thức đó là A
Ta có công thức \(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Dựa vào công thức trên, ta có
\(A=\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+....+\dfrac{1}{2008}-\dfrac{1}{2009}\right)\)
\(A=\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{2009}\right)\)
\(A=2.\left(\dfrac{2007}{4018}\right)=\dfrac{2007}{2009}\)
b) dễ quá bạn tự làm. (không phải mink không biết làm đâu nha)
C = 2007 x 2011
C = 2007 x (2009 + 2)
C = 2007 x 2009 + 2007 x 2
D = 2009 x 2009
D = (2007 + 2) x 2009
D = 2007 x 2009 + 2 x 2009
Vì 2007 x 2 < 2 x 2009
=> C < D
C = 2009.2009
C = (2007+2).2009
C = 2007.2009 + 2.2009
D = 2007.2011
D = 2007.(2009+2)
D = 2007.2009 + 2.2007
Vì 2.2009 > 2.2007
=> 2007.2009 + 2.2009 > 2007.2009 + 2.2007
=> C > D
bạn ghi rõ đề chứ mik chả bt làm gì lun .
nhưng nếu tính thế thì =1 cách làm dệ lắm