Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}\)
\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{256}-\dfrac{1}{512}\)
\(\Rightarrow A=1-\dfrac{1}{512}=\dfrac{511}{512}\)
\(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+...+x:\dfrac{1}{512}=511\\ 2x+4x+8x+..+512x=511\\ x\left(2+4+8+...+512\right)=511\\ x\left(2^1+2^2+2^3+...+2^9\right)=511\\ \)
Gọi \(S=2^1+2^2+2^3+...+2^9\)
\(2S=2^2+2^3+2^4+...+2^{10}\\ 2S-S=\left(2^2+2^3+2^4+...+2^{10}\right)-\left(2^1+2^2+2^3+...+2^9\right)\\ S=2^{10}-2\)
\(x\left(2^{10}-2\right)=511\\ 2x\left(2^9-1\right)=511\\ 2x\left(512-1\right)=511\\ 2x\cdot511=511\\ 2x=1\\ x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
\(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+...+x:\dfrac{1}{512}=511\)
\(\Rightarrow x\left(2+4+8+...+512\right)=511\)
\(\Rightarrow\dfrac{\left(512+2\right).255}{2}.x=511\)
\(\Rightarrow65535x=511\)
\(\Rightarrow x=\dfrac{511}{65535}\)
Vậy.................
\(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+...+x:\dfrac{1}{512}=511\)
\(\Rightarrow x.\left(2+4+8+...+512\right)=511\)
\(\Rightarrow\dfrac{\left(512+2\right).255}{2}.x=511\)
\(\Rightarrow65535x=511\)
\(\Rightarrow x=\dfrac{511}{65535}\)
Vậy \(x=\dfrac{511}{65535}\)
Lời giải:
\(\left(\frac{1}{2}\right)^{\frac{-1}{4}}=(2^{-1})^{\frac{-1}{4}}=2^{\frac{1}{4}}=\sqrt[4]{2}\)
Không đáp án nào đúng.
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..........+\dfrac{1}{256}+\dfrac{1}{512}=?\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+...+\dfrac{1}{256}-\dfrac{1}{512}-\dfrac{1}{512}\)
\(=1-\dfrac{1}{512}\)
\(=\dfrac{511}{512}\)
Vậy \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+.........+\dfrac{1}{256}+\dfrac{1}{512}=\dfrac{511}{512}\)
Bài bạn trên cách trình bày mk ko hiểu lắm! mk làm lại nhé!
Đặt :
\(S=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...........+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Leftrightarrow S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.........+\dfrac{1}{2^8}+\dfrac{1}{2^9}\)
\(\Leftrightarrow2S=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^9}\right)\)
\(\Leftrightarrow2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^8}\)
\(\Leftrightarrow2S-S=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^9}\right)\)
\(\Leftrightarrow S=1-\dfrac{1}{2^9}\)
\(\Leftrightarrow S=1-\dfrac{1}{512}=\dfrac{511}{512}\)