Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có x2- 2mx - m = 0 (1)
Với m=1 , (1)<=> x2- 2x-1=0
<=> x2-2x+1 -2 = 0
<=> (x-1)2=2
=>\(\left[{}\begin{matrix}x-1=-\sqrt{2}\\x-1=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}+1\\x=\sqrt{2}+1\end{matrix}\right.\)
b , câu b ko biết làm
\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)^2+\left(x^2+3x+2\right)^2}{\left(x^2-1\right)^2}-\dfrac{11\left(x^4-5x^2+4\right)}{\left(x^2-1\right)^2}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)^2+\left(x^2+3x+2\right)^2-11\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)^2-6x\left(x^2+2\right)+9x^2+\left(x^2+2\right)^2+6x\left(x^2+2\right)+9x^2-11\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow2\left(x^2+2\right)^2+18x^2-11x^4+55x^2-44=0\)
\(\Leftrightarrow2\left(x^4+4x^2+4\right)-11x^4+73x^2-44=0\)
=>\(-9x^4+81x^2-36=0\)
=>9x^4-81x^2+36=0
=>x^4-9x^2+4=0
=>\(x^2=\dfrac{9\pm\sqrt{65}}{2}\)
=>\(x=\pm\sqrt{\dfrac{9\pm\sqrt{65}}{2}}\)
\(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}+1}\)
\(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0;x\ne25\right)\\ A=\dfrac{15-\sqrt{x}+2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\\ A=\dfrac{5+\sqrt{x}}{\sqrt{x}+5}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+1}\)
\(C=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\left(đk:x\ge0,x\ne25\right)\)
\(=\dfrac{15-\sqrt{x}+2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+1}\)
\(ĐK:x\ge0;x\ne25\)
\(C=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\\ C=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\)
a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)
\(\Leftrightarrow x^2+3x-12-10x-30=0\)
\(\Leftrightarrow x^2-7x-42=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};1\right\}\)
Đk:\(x\ge1;x\le-2\)
Đặt \(t=\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}\)
\(\Rightarrow t^2=\left(x-1\right)\left(x+2\right)\)
Pttt: \(t^2+4t=12\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)
TH1: \(t=2\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=2\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-1\right)\left(x+2\right)=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x^2+x-6=0\end{matrix}\right.\)\(\Rightarrow x=2\) (thỏa mãn)
TH2:\(t=-6\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=-6\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1< 0\\\left(x-1\right)\left(x+2\right)=36\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x^2+x-38=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1-3\sqrt{17}}{2}\) (thỏa mãn)
Vậy...
\(\dfrac{140}{x}+5=\dfrac{\left(140+10\right)}{x-1}\left(x\ne0,x\ne1\right)\)
\(\Leftrightarrow\dfrac{140+5x}{x}=\dfrac{150}{x-1}\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(140+5x\right)=150x\)
\(\Leftrightarrow140x+5x^2-140-5x-150x=0\)
\(\Leftrightarrow5x^2-15x-140=0\)
\(\Leftrightarrow x^2-3x-28=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(N\right)\\x=-4\left(N\right)\end{matrix}\right.\)
\(S=\left\{7,-4\right\}\)
ĐK: `x \ne 0 ; x \ne -1`
`140/x+5=150/(x-1)`
`<=>(140+5x)/x=150/(x-1)`
`<=>(140x+5x)(x-1)=150x`
`<=>5x^2+135x-140=150x`
`<=>5x^2-15x-140=0`
`<=>` \(\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy...
9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)
14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)
15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)
\(C=\left(\dfrac{3}{x-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{3+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{1}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
`1/10x+1/15(11-x)=1`
`<=>1/10x+11/15-1/15x=1`
`<=>1/30x=1-11/15=4/15`
`<=>x=4/15*30=8`
Vậy `x=8`
\(\dfrac{x}{10}+\dfrac{11-x}{15}=1< =>\dfrac{3x+22-2x}{30}=1\)
\(< =>\dfrac{3x+22-2x}{30}=1=>x+22=30< =>x=30-22< =>x=8\)