Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)
\(\Leftrightarrow x^2+3x-12-10x-30=0\)
\(\Leftrightarrow x^2-7x-42=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};1\right\}\)
`1/10x+1/15(11-x)=1`
`<=>1/10x+11/15-1/15x=1`
`<=>1/30x=1-11/15=4/15`
`<=>x=4/15*30=8`
Vậy `x=8`
\(\dfrac{x}{10}+\dfrac{11-x}{15}=1< =>\dfrac{3x+22-2x}{30}=1\)
\(< =>\dfrac{3x+22-2x}{30}=1=>x+22=30< =>x=30-22< =>x=8\)
\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)^2+\left(x^2+3x+2\right)^2}{\left(x^2-1\right)^2}-\dfrac{11\left(x^4-5x^2+4\right)}{\left(x^2-1\right)^2}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)^2+\left(x^2+3x+2\right)^2-11\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)^2-6x\left(x^2+2\right)+9x^2+\left(x^2+2\right)^2+6x\left(x^2+2\right)+9x^2-11\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow2\left(x^2+2\right)^2+18x^2-11x^4+55x^2-44=0\)
\(\Leftrightarrow2\left(x^4+4x^2+4\right)-11x^4+73x^2-44=0\)
=>\(-9x^4+81x^2-36=0\)
=>9x^4-81x^2+36=0
=>x^4-9x^2+4=0
=>\(x^2=\dfrac{9\pm\sqrt{65}}{2}\)
=>\(x=\pm\sqrt{\dfrac{9\pm\sqrt{65}}{2}}\)
9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)
14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)
15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)
=>2/|x-1|-5(y-1)=-3 và 2/|x-1|+4(y-1)=6
=>-9(y-1)=-9 và 1/|x-1|+2(y-1)=3
=>y-1=1 và 1/|x-1|+2=3
=>|x-1|=1 và y=2
=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(0;2\right)\right\}\)
Lời giải:
Đặt $\frac{1}{x-y+2}=a;\frac{1}{x+y-1}=b$ thì HPT trở thành cơ bản:
\(\left\{\begin{matrix}
14a-10b=9\\
3a+2b=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
14a-10b=9\\
15a+10b=20\end{matrix}\right.\)
$\Rightarrow (14a-10b)+(15a+10b)=9+20$
$\Leftrightarrow 29a=29\Leftrightarrow a=1$.
$b=\frac{4-3a}{2}=\frac{1}{2}$
Vậy: \(\left\{\begin{matrix} \frac{1}{x-y+2}=1\\ \frac{1}{x+y-1}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x-y+2=1\\ x+y-1=2\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x-y=-1\\ x+y=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\end{matrix}\right.\)
a.
ĐKXĐ: \(x\ne\pm y\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\dfrac{1}{x-y}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u+v=2\\2u+3v=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3u+3v=6\\2u+3v=5\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=2-u\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y}=1\\\dfrac{1}{x-y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+7=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-5x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=4xy\\\left(\dfrac{x}{y+1}\right)^2+\left(\dfrac{y}{x+1}\right)^2=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4xy\\\left(\dfrac{x}{y+1}\right)^2+\left(\dfrac{y}{x+1}\right)^2=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{x}{y+1}\right)\left(\dfrac{y}{x+1}\right)=\dfrac{1}{4}\\\left(\dfrac{x}{y+1}\right)^2+\left(\dfrac{y}{x+1}\right)^2=\dfrac{1}{2}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x}{y+1}=u\\\dfrac{y}{x+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^2+v^2=\dfrac{1}{2}\\uv=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow u^2-2uv+v^2=0\Leftrightarrow u=v=\pm\dfrac{1}{2}\)
TH1: \(u=v=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+1}=\dfrac{1}{2}\\\dfrac{y}{x+1}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=1\\x-2y=-1\end{matrix}\right.\) \(\Leftrightarrow...\)
Th2: \(u=v=-\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+1}=-\dfrac{1}{2}\\\dfrac{y}{x+1}=-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x+y=-1\\x+2y=-1\end{matrix}\right.\) \(\Leftrightarrow...\)
\(\dfrac{140}{x}+5=\dfrac{\left(140+10\right)}{x-1}\left(x\ne0,x\ne1\right)\)
\(\Leftrightarrow\dfrac{140+5x}{x}=\dfrac{150}{x-1}\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(140+5x\right)=150x\)
\(\Leftrightarrow140x+5x^2-140-5x-150x=0\)
\(\Leftrightarrow5x^2-15x-140=0\)
\(\Leftrightarrow x^2-3x-28=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(N\right)\\x=-4\left(N\right)\end{matrix}\right.\)
\(S=\left\{7,-4\right\}\)
ĐK: `x \ne 0 ; x \ne -1`
`140/x+5=150/(x-1)`
`<=>(140+5x)/x=150/(x-1)`
`<=>(140x+5x)(x-1)=150x`
`<=>5x^2+135x-140=150x`
`<=>5x^2-15x-140=0`
`<=>` \(\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy...