Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ΔABCΔ��� cân tại A(gt)�(��)
=> ˆABC=ˆACB���^=���^ (tính chất tam giác cân).
Mà ˆACB=ˆNCE���^=���^ (vì 2 góc đối đỉnh).
=> ˆABC=ˆNCE.���^=���^.
Hay ˆMBD=ˆNCE.���^=���^.
Xét 2 ΔΔ vuông BDM��� và CEN��� có:
ˆBDM=ˆCEN=900(gt)���^=���^=900(��)
BD=CE(gt)��=��(��)
ˆMBD=ˆNCE(cmt)���^=���^(���)
=> ΔBDM=ΔCENΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).
=> DM=EN��=�� (2 cạnh tương ứng).
b) Xét 2 ΔΔ vuông DMI��� và ENI��� có:
ˆMDI=ˆNEI=900(gt)���^=���^=900(��)
DM=EN(cmt)��=��(���)
ˆDIM=ˆEIN���^=���^ (vì 2 góc đối đỉnh)
=> ΔDMI=ΔENIΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).
=> MI=NI��=�� (2 cạnh tương ứng).
=> I là trung điểm của MN.��.
Mà I∈BC(gt)�∈��(��)
=> Đường thẳng BC�� cắt MN�� tại trung điểm I của MN(đpcm).��(đ���).
a/ Ta có \(\widehat{NCE}=\widehat{ACB}\) (góc đối đỉnh) mà \(\widehat{ACB}=\widehat{ABC}\) (do tg ABC cân tại A) \(\Rightarrow\widehat{ABC}=\widehat{NCE}\)
Xét tg vuông MBD và tg vuông NCE có
BD=CE (đề bài) và \(\widehat{ABC}=\widehat{NCE}\left(cmt\right)\) => tg MBD = tg NCE (hai tg vuông có cạnh góc vuông và 1 góc nhọn tương ứng = nhau thì bằng nhau) => MD=NE
b/ Xét tứ giác MEND có
\(MD\perp BC;NE\perp BC\) => MD//NE
MD=NE (cmt)
=> Tứ giác MEND là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau thì tứ giác đó là hbh)
MN và DE là 2 đường chéo của hbh MEND => I là trung điểm của DE (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
c/ ta có
\(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{ABO}=\widehat{ABC}+\widehat{CBO}=90^o\)
\(\widehat{ACO}=\widehat{ACB}+\widehat{BCO}=90^o\)
\(\Rightarrow\widehat{CBO}=\widehat{BCO}\) => tam giác BOC cân tại O => BO=CO
Xét tg vuông ABO và tg vuông ACO có
AB=AC (Do tg ABC cân tại A)
BO=CO (cmt)
\(\widehat{ABO}=\widehat{ACO}=90^o\)
=> tg ABO = tg ACO (c.g.c) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\) => AO là phân giác của \(\widehat{BAC}\)
=> BO là đường trung trực của BC (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung trực)