K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Đáp án A

Có 2 trường hợp như sau

+)TH1: có 3 nam, 2 nữ, suy ra có cách chọn

+) TH2: có 4 nam, 1 nữ, suy ra có cách chọn

Suy ra xác suất cần tính bằng 

11 tháng 11 2018

Chọn B

17 tháng 11 2019

Đáp án C

Cách giải:

Xét các số x = a; y = b+1; z = c+2; t = d+3. Vì 1≤a≤b≤c≤d≤9 => 1≤x<y<z<t≤12 (*)

Và mỗi bộ 4 số (x;y;z;t) được chọn từ tập hợp {1;2;3;…;12} ta đều thu được bộ số thỏa mãn

(*). Do đó, số cách chọn 4 số trong 12 số là  C 12 4 = 495 số suy ra n(X) = 495

Số phần tử của không gian mẫu là n(Ω) = 9.10.10.10 = 9000

Vậy xác suất cần tính là 

9 tháng 8 2018

Không gian mẫu n Ω = 9 . 10 3 = 9000 .

Gọi A là biến cố: “số được chọn có dạng  a b c d ¯ , trong đó  1 ≤ a ≤ b ≤ c ≤ d ≤ 9

TH1:   1 ≤ a < b < c < d ≤ 9

Chọn ngẫu nhiêu 4 số trong các số từ 1 đến 9 có C 9 4 = 126  cách.

Có duy nhất một cách xếp các chữ số  theo thứ tự tăng dần, do đó trường hợp này có 126 số thỏa mãn.

TH2: 1 ≤ a = b < c < d ≤ 9 . Số cần tìm có dạng a a c d ¯ .

Chọn ngẫu nhiên 3 số trong các số từ 1 đến 9 có C 9 3 = 84  cách.

Có duy nhất một cách xếp các chữ số  theo thứ tự tăng dần, do đó trường hợp này có 84 số thỏa mãn.

Tương tự như vậy, các trường hợp  1 ≤ a < b = c < d ≤ 9 , 1 ≤ a < b < c = d ≤ 9    mỗi trường hợp cũng có 84 số thỏa mãn.

TH3:  1 ≤ a = b = c < d ≤ 9 . Số cần tìm có dạng  a a a d ¯   .

Chọn ngẫu nhiên 2 số trong các số từ 1 đến 9 có C 9 2 = 36  cách.

Có duy nhất một cách xếp các chữ số  theo thứ tự tăng dần, do đó trường hợp này có 36 số thỏa mãn.

Tương tự như vậy, các trường hợp  1 ≤ a = b < c = d ≤ 9 , 1 ≤ a < b = c = d ≤ 9  mỗi trường hợp cũng có 36 số thỏa mãn.

 

TH4:  1 ≤ a = b = c = d ≤ 9 . Số cần tìm có dạng  a a a a ¯ . Có 9 số thỏa mãn.

Chọn B.

18 tháng 4 2018

10 tháng 10 2019

Chọn đáp án B

Phương pháp

Chia các TH sau:

TH1: a<b<c.

TH2: a=b<c.

TH3: a<b=c.

TH4: a=b=c.

Cách giải

Gọi số tự nhiên có 3 chữ số là a b c ¯  (0≤a,b,c≤9, a≠0).

=> S có 9.10.10=900 phần tử. Chọn ngẫu nhiên một số từ S => n(Ω)=900

Gọi A là biến cố: “Số được chọn thỏa mãn a≤b≤c”.

TH1: a<b<c. Chọn 3 số trong 9 số từ 1 đến 9, có duy nhất một cách xếp chúng theo thứ tự tăng dần từ trái qua phải nên TH này có C 9 3  số thỏa mãn.

TH2: a=b<c, có  C 9 2  số thỏa mãn.

TH3: a<b=c có  C 9 2  số thỏa mãn.

TH4: a=b=c có 9 số thỏa mãn.

⇒ n ( A ) = C 9 3 + 2 C 9 2 + 9 = 165

Vậy P ( A ) = 11 60 .

31 tháng 7 2017

Gọi n là số học sinh nữ của lớp n ∈ N * , n ≤ 28 .

Số cách chọn 3 học sinh bất kì là cách. Suy ra số phần tử của không gian mẫu n Ω = C 30 3  

Gọi A là biến cố “chọn được 2 nam và 1 nữ”. Ta có n A = C 30 - n 2 C n 1  

Theo đề

P A = 12 29 ⇔ C 30 - n 2 C n 1 C 30 3 = 12 29 ⇔ n - 14 n 2 - 45 n + 240 = 0 ⇔ n = 14 n = 45 ± 1065 2  

So với điều kiện, chọn n = 14 

Vậy lớp đó có 14 học sinh nữ.

Đáp án A

25 tháng 2 2018

1 tháng 6 2017

Đáp án C

Số các số tự nhiên có 5 chữ số là:  9.9.8.7.6 = 27216.  

Số thỏa mãn có chữ số đứng sau lớn hơn chữ số đứng trước (tính từ trái sang phải ) là a b c d e ¯  suy ra  a ≠ 0 ⇒ b , c , d , e ≠ ≠ 0

Với mỗi cách chọn ra 5 số trong 9 số từ 1 đến 9 ta được 1 số thỏa mãn có chữ số đứng sau lớn hơn chữ số đứng trước. Vậy có C 9 5 = 126 số.

Vậy xác suất là: 126 27216 = 1 126 .