K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

**** cho mình rồi mình trả lời cho

25 tháng 12 2015

câu cmr tồn tại 1 số là bội của 19 có tổng các chữ số là 19:

tồn tại số là bội của 19 có tổng các chữ số là 19. VD: 874

11 tháng 8 2016

bài như cc

23 tháng 2 2020

Xét 2015 số: 

\(a_1=2\)

\(a_2=22\)

...

\(a_{2015}=222...2\)(2015 chữ số 2)

Nếu như có một trong 2015 số này chia hết cho 2015 thì bài toán được cm (do số đó chỉ gồm các chữ số 2

Nếu như không có số nào chia hết cho 2015, thì thì theo nguyên lí Dirichlet ít nhất 2 trong 2015 số này có cùng số dư khi chia 2015 (do chỉ có tối đa 2015 số dư từ 1 đến 2014). Hai số này chia hết cho 2015 do cùng số dư

Giả sử hai số đó là \(a_i\)và \(a_j\)(i<j)

\(\Rightarrow a_j-a_i=222...200...0\)(có i chữ số 0 và j-i chữ số 2) chia hết cho 2015

\(\Rightarrow\)đpcm

2 tháng 2 2015

3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9

mà 2n-n=n=>n chia hết cho 9 => đpcm

16 tháng 1 2017

câu 1 bạn châu sai rồi