Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Vũ Thị Kim Oanh - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo
\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{a-b}\)
\(\Rightarrow\dfrac{b\left(a-b\right)}{ab\left(a-b\right)}+\dfrac{a\left(a-b\right)}{ab\left(a-b\right)}=\dfrac{ab}{ab\left(a-b\right)}\left(a,b\ne0;a\ne b;a,b>0\right)\)
\(\Rightarrow\left(a-b\right)\left(b-a\right)=ab\)
\(\Rightarrow-\left(a-b\right)\left(a-b\right)=ab\)
\(\Rightarrow-\left(a-b\right)^2=ab\left(1\right)\)
mà \(\left\{{}\begin{matrix}-\left(a-b\right)^2< 0\\ab>0\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô lý
⇒ không có 2 số a≠b; a,b>0 thỏa đề bài
Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi
Giả sử trong 2016 số này khác nhau từng đôi 1 ta có
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\)
\(< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{7}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\)(2009 số \(\frac{1}{8}\))
\(=1+\frac{1}{2}+...+\frac{1}{7}+\frac{2009}{8}\)
\(=\frac{363}{140}+\frac{2009}{8}\approx253,72< 300\)
Vậy trong 2016 số đã cho tồn tại ít nhất 2 số bằng nhau
Có vẻ thiếu cái gì đó. khi có hai số bằng nhau rồi. g/s là a2015=a2016
Liệu P trình : 1/a1+...+1/a2015=B có tồn tại Nghiệm nguyên
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=>\(\frac{b-a}{ab}=\frac{1}{a-b}\)
=>\(\left(b-a\right).\left(a-b\right)=ab\)
Ta có: b-a và a-b là 2 số đối nhau
=>(b-a).(a-b) < 0
Mà a.b > 0 (vì a;b là 2 số nguyên dương)
=>\(\left(b-a\right).\left(a-b\right)\ne ab\)
=>không tờn tại 2 số nguyên dương a;b khác nhau thỏa mãn đề bài