Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=>\(\frac{b-a}{ab}=\frac{1}{a-b}\)
=>\(\left(b-a\right).\left(a-b\right)=ab\)
Ta có: b-a và a-b là 2 số đối nhau
=>(b-a).(a-b) < 0
Mà a.b > 0 (vì a;b là 2 số nguyên dương)
=>\(\left(b-a\right).\left(a-b\right)\ne ab\)
=>không tờn tại 2 số nguyên dương a;b khác nhau thỏa mãn đề bài
Câu hỏi của Vũ Thị Kim Oanh - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo
Cầu 1:
\(\frac{a+b}{a^2+ab+b^2}=\frac{49}{1801}\)
Biến đổi ta có: \(\frac{a+b}{\left(a+b\right)^2-ab}=\frac{49}{1801}\)
Cứ cho a+b=49 thì
Thế a+b vào đẳng thức trên đc:
\(\frac{a+b}{2401-ab}=\frac{49}{1801}\)
Từ đó: ta có
\(\hept{\begin{cases}a+b=49\\ab=600\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=24\\b=25\end{cases}}\)hoặc \(\hept{\begin{cases}b=24\\a=25\end{cases}}\)
Vậy phân số cần tìm là ........... (có 2 p/s nha)
Câu 2 Dễ mà ~~~~~~~
Làm biếng :3
a # b # c # a,thoan man a/(b-c)+b/(c-a)+c/(a-b)=0
<=> a(c-a)(a-b)+b(a-b)(b-c)+c(b-c)(c-a)=0
<=>-a(a-n)(a-c)-b(b-a)(b-c)+c(c-a)(c-b)(c-b)=0
<=>a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)=0 (*)
Tu (*)ta thay a,b,c doi xung nen ko giam tinh tong quat gia su :a>b>c
Nếu a,b,c đều ko âm ,giả thiết trên thành a>b>c>hoặc=0
(*)<=>(a-b)(a^2 - ac - b^2 +bc)+c(c-a)(c-b)=0
<=>(a-b)[(a+b)(a-b)- c(a-b)]+c(c -a)(c-b)=0
<=>(a-b)^2.(a+b-c)+c(a-c)(b-c)=0 (**)
Thấy b- c > 0 (do b > c)và a > 0 =>a+b-c > 0 =>(a-b)^2 . (a+b-c)>0 va c(a-c)(b-c)>hoac = 0
=>(a-b)^2.(a+b-c)+c(a-c)(b-c)>0 mâu thuẫn với (**)
Vay c < 0 (noi chung la trong a,b,c phai co so am )
Nếu cả a,b,c đều không có số dương do giả thiết trên ta có :0 > hoac = a > hoac = b>hoac = c
(*)<=>a(a-b)(a-c)+(b-c)(b^2-ab-c^2 + ca)=0
<=>a(a-b)(a-c)+(b-c)[(b+c)(b-c)-a(b-c)]=0
<=>a(a-b)(a-c)+(b-c)^2.(b+c-a)=0 (***)
a-b > 0 ;a- c > 0 => a(a-b)(a-c)< hoac = 0 (vi a < hoac = 0)
Và b<0 ; c -a < 0 => b+ c -a < 0=>(b-c)^2.(b+c-a)<0
=> a(a-b)(a-c)+(b-c)^2.(b+c-a)<0 mâu thuẫn với (***)
Chứng tỏ trong a,b,c phải có số dương
Tóm lại trong 3 số a,b,c phải có số dương và âm .
Bài 1 :
Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)
Từ \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)
Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Chúc bạn học tốt ( -_- )
Bài 2 :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)
Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :
\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)
Chúc bạn học tốt ( -_- )
Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi
\(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
\(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{\frac{9}{7}}\)
\(=5+\frac{1}{1+\frac{2}{7}}\)
\(=5+\frac{1}{1+\frac{1}{\frac{7}{2}}}\)
\(=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\)
\(\Rightarrow a=1,b=3,c=2\)
a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)
b/3> hoặc = b/5 ( xảy randaaus bằng với a=0
Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0