Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2 + 3 +...+ 50
Dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là:
(50 - 1): 1 + 1 = 50
Tổng A là:
A = (50 + 1)x 50 : 2 = 1275
Muốn tính tổng của một dãy số cách đều em cần có kiến thức sau:
1, Tìm khoảng cách của dãy số cách đều bằng cách lấy số hạng sau trừ số hạng liền kề trước nó
2, Tìm số số hạng bằng cách lấy số cuối trừ số đầu được bao nhiêu chia cho khoảng cách rồi cộng 1
3, Tổng dãy số cách đều bằng (số cuối + số đầu) nhân số số hạng rồi chia 2
\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{100}\)
\(\Rightarrow A=\dfrac{99}{100}\)
Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?
=1/2+1/3+1/4+...+1/100
xét mẫu:có ssh là (100-2):1+1=99 số
tổng là (100+2)*99:2=5940
vậy ta có 1/5940
các bávbnj ơi làm ươn edoufbnbvcxsdfghjkjhgtrewertghjhgfdsdcvbnmjhgtrfvbnmnjhgfv
báo thật đấy chứ đùa à mấy lũ.
Chales nhá chỉ có mỗi bạn là tôi dọa,vì lúc đó tôi đang có chuyện bực riêng nên lúc đó chưa báo cáo ai
Tôi join công ty báo cáo vì lúc nào tôi hỏi cũng ít người tl,có lúc ko.Tại sao tôi phải đi giúp mấy lũ trong khi mấy lũ ko giúp tôi hả
a) \(...=-\dfrac{1}{4}.\dfrac{4}{17}.\left(-\dfrac{63}{21}\right).\left(-\dfrac{7}{12}\right)\)
\(=-\dfrac{1}{17}.\dfrac{63}{21}.\dfrac{7}{12}\)
\(=-\dfrac{7}{68}\)
b) \(...=-\dfrac{2}{5}.\dfrac{4}{15}-\dfrac{3}{10}.\dfrac{4}{15}\)
\(=\dfrac{4}{15}\left(-\dfrac{2}{5}-\dfrac{3}{10}\right)\)
\(=\dfrac{4}{15}\left(-\dfrac{4}{10}-\dfrac{3}{10}\right)\)
\(=\dfrac{4}{15}.\left(-\dfrac{7}{10}\right)=-\dfrac{14}{75}\)
c) \(...=21-\dfrac{15}{4}:\left(\dfrac{9}{24}-\dfrac{4}{24}\right)\)
\(=21-\dfrac{15}{4}:\dfrac{5}{24}\)
\(=21-\dfrac{15}{4}.\dfrac{24}{5}\)
\(=21-3.6=3\)
d) \(...=\left(-\dfrac{3}{4}+\dfrac{2}{5}\right).\dfrac{7}{3}+\left(\dfrac{3}{5}-\dfrac{1}{4}\right).\dfrac{7}{3}\)
\(=\dfrac{7}{3}\left(-\dfrac{3}{4}+\dfrac{2}{5}+\dfrac{3}{5}-\dfrac{1}{4}\right)\)
\(=\dfrac{7}{3}\left(-\dfrac{3}{4}-\dfrac{1}{4}+\dfrac{2}{5}+\dfrac{3}{5}\right)\)
\(=\dfrac{7}{3}\left(-1+1\right)=0\)
Bài 1:
a; \(\dfrac{1}{n}\); \(\dfrac{1}{n+1}\) (n > 0; n \(\in\) Z)
\(\dfrac{1}{n}\) - \(\dfrac{1}{n+1}\) = \(\dfrac{n+1-1}{n.\left(n+1\right)}\) = \(\dfrac{1}{n\cdot\left(n+1\right)}\)
⇒ \(\dfrac{1}{n}\) - \(\dfrac{1}{n+1}\) = \(\dfrac{1}{n\left(n+1\right)}\) (đpcm)
Bài 1b
A = \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\) + \(\dfrac{1}{8.9}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{9}\)
A = \(\dfrac{7}{18}\)