Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n = 8k + 7 là tổng của 3 bình phương
Vì 8k + 7 là số lẻ nên 8k + 7 chỉ có thể tách thành tổng các bình phương của 3 số lẻ hoặc 2 số chẵn 1 số lẻ
Mà số chính phương chia 8 chỉ có thể dư 0; 1 hoặc 4
Do đó, nếu 8k + 7 có thể tách thành tổng 3 số lẻ thì 8k + 7 chia 8 dư 1 + 1 + 1 = 3, vô lý vì 8k + 7 chia 8 dư 7
nếu 8k + 7 có thể tách thành tổng 2 số chẵn 1 số lẻ thì 8k + 7 chia 8 dư 0 + 0 + 1 = 1 hoặc 0 + 4 + 1 = 5 hoặc 4 + 4 + 1 = 9, vô lý vì 8k + 7 chia 8 dư 7=>đpcm
ko vì
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
Gọi 2 số cần tìm là a và b (là số tự nhiên)
Theo bài ra ta có: a-b=2
a2-b2=36
=>(a-b)(a+b)=36
=>2(a+b)=36
=>a+b=18
=>a=(18+2):2=10
b=10-2=8
Vậy 2 số cần tìm là 10 và 8
Giả sử 2002 viết được thành hiệu bình phương của 2 số tự nhiên.
Ta có: \(2002=a^2-b^2=\left(a-b\right)\left(a+b\right)\) (1)
Mà \(a+b+a-b=2a⋮2\)
Nên a và b là 2 số cùng tính chẵn lẻ
\(\Rightarrow\hept{\begin{cases}\left(a+b\right)⋮2\\\left(a-b\right)⋮2\end{cases}\Rightarrow\left(a+b\right)\left(a-b\right)⋮4}\)(2)
Từ (1) và (2) \(\Rightarrow2002⋮4\) (vô lý)
Vậy điều giả sử là sai. 2002 không thể biểu diễn thành hiệu các bình phương của 2 số tự nhiên.
Chúc bạn học tốt.