K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

Giả sử 2002 viết được thành hiệu bình phương của 2 số tự nhiên. 

Ta có: \(2002=a^2-b^2=\left(a-b\right)\left(a+b\right)\) (1)

Mà \(a+b+a-b=2a⋮2\)

Nên a và b là 2 số cùng tính chẵn lẻ

\(\Rightarrow\hept{\begin{cases}\left(a+b\right)⋮2\\\left(a-b\right)⋮2\end{cases}\Rightarrow\left(a+b\right)\left(a-b\right)⋮4}\)(2)

Từ (1) và (2) \(\Rightarrow2002⋮4\) (vô lý)

Vậy điều giả sử là sai. 2002 không thể biểu diễn thành hiệu các bình phương của 2 số tự nhiên.

Chúc bạn học tốt.

Giả sử n = 8k + 7 là tổng của 3 bình phương

Vì 8k + 7 là số lẻ nên 8k + 7 chỉ có thể tách thành tổng các bình phương của 3 số lẻ hoặc 2 số chẵn 1 số lẻ

Mà số chính phương chia 8 chỉ có thể dư 0; 1 hoặc 4

Do đó, nếu 8k + 7 có thể tách thành tổng 3 số lẻ thì 8k + 7 chia 8 dư 1 + 1 + 1 = 3, vô lý vì 8k + 7 chia 8 dư 7

nếu 8k + 7 có thể tách thành tổng 2 số chẵn 1 số lẻ thì 8k + 7 chia 8 dư 0 + 0 + 1 = 1 hoặc 0 + 4 + 1 = 5 hoặc 4 + 4 + 1 = 9, vô lý vì 8k + 7 chia 8 dư 7=>đpcm

15 tháng 6 2016

Ta thấy: Mỗi lầ làm như vậy thiftinhs chất chẵn lẻ của dãy không đổi.

Mà tổng ban đầu là \(2017.2018.\frac{1}{2}=2017.1009\) là số lẻ nên sau khi thực hiện thì tổng vẫn lẻ.

Mà 2016 là số chẵn nên không thể bằng 2016 được.

31 tháng 1 2017

Mới học lớp 6 thôi sao biết được

31 tháng 1 2017

xin lỗi mk mới học lớp 6 nên ko biết!!!!

8 tháng 2 2019

ko vì 

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

8 tháng 2 2019

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

26 tháng 5 2015

Gọi 2 số cần tìm là a và b (là số tự nhiên)

Theo bài ra ta có: a-b=2

 a2-b2=36

=>(a-b)(a+b)=36

=>2(a+b)=36

=>a+b=18

=>a=(18+2):2=10

b=10-2=8

           Vậy 2 số cần tìm là 10 và 8