K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

ko vì 

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

8 tháng 2 2019

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:

Ta thấy 1 scp khi chia 4 luôn có dư là $0$ hoặc $1$

$\Rightarrow n^2\equiv 0,1 \pmod 4$

Mà $1990\equiv 2\pmod 4$

$\Rightarrow 1990+n^2\equiv 2, 3\pmod 4$

$\Rightarrow 1990+n^2$ không thể là số chính phương với mọi số tự nhiên $n$.

10 tháng 9 2017

 + Giả sử các số nguyên tố đều lớn hơn 2 ta có 
=> pi = 4n + 1 hoạc pi = 4n + 3 
=> pi^2 chia 4 dư 1 hay pi^2 = 1 (mod4) 
=> p1^2 + p2^2 + ... + p7^2 = 7 (mod4) 
mà 7 = 3(mod4) mặt khác p8^2 = 1 (mod 4) 
=> pt VN vậy phải có 1 pi nào đó = 2 giả sử là p1 
do 2^2 = 4 là số chẵn và p2^2 + ... + p7^2 là tổng bình phương 
của 6 số lẽ nên có tổng phải là số chẵn 
=> 2^2 + p2^2 + ... + p7^2 là số chẵn => p8 = 2 
=> p2^2 + ... + p7^2 = 0 hay p2 = p3 = .. = p7 = 0 
* Vậy pt VN

P/s: Anh/chị tham khảo ở đây nha

11 tháng 9 2017

chưa hiểu dòng số 5 giải thích giúp mình

AH
Akai Haruma
Giáo viên
18 tháng 7 2023

Lời giải:

Xét modun $3$ của $n$ thì ta dễ dàng thấy $n^2+n+2$ không chia hết cho $3$ với mọi $n$. Do đó $n^2+n+2$ nếu thỏa mãn đề thì chỉ có thể là tích 2 số tự nhiên liên tiếp (nếu từ 3 số tự nhiên liên tiếp thì sẽ chia hết cho 3) 

Đặt $n^2+n+2=a(a+1)$ với $a\in\mathbb{N}$

$\Leftrightarrow 4n^2+4n+8=4a^2+4a$

$\Leftrightarrow (2n+1)^2+8=(2a+1)^2$
$\Leftrightarrow 8=(2a+1)^2-(2n+1)^2=(2a-2n)(2a+2n+2)$

$\Leftrightarrow 2=(a-n)(a+n+1)$

Hiển nhiên $a+n+1> a-n$ và $a+n+1>0$ với mọi $a,n\in\mathbb{N}$ nên:

$a+n+1=2; a-n=1$

$\Rightarrow n=0$ (tm)

Nếu nó là mũ chẵn thì chắc chắn đó là số chính phương

Còn nếu là mũ lẻ thì chưa chắc

16 tháng 8 2021

Nếu nó là mũ chẵn thì chắc chắn đó là số chính phương

Còn nếu là mũ lẻ thì chưa chắc