Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=(3n+8)/(n+1)`
Giả sử A không là số tối giản
`=>3n+8 vdots n+1`
`=>3n+3+5 vdots n+1`
`=>5 vdots n+1`
`=>n+1 in Ư(5)={+-1,+-5}`
`=>n in {0,-2,4,-6}`
Mà `n in N`
`=>n in {0,4}`
Vậy có vô số giá trị nằm trong khoảng 0 đến 1000 sao cho n là số tự nhiên và `n ne 0,4`
A=3n+8n+1A=3n+8n+1
Giả sử A không là số tối giản
⇒3n+8⋮n+1⇒3n+8⋮n+1
⇒3n+3+5⋮n+1⇒3n+3+5⋮n+1
⇒5⋮n+1⇒5⋮n+1
⇒n+1∈Ư(5)={±1,±5}⇒n+1∈Ư(5)={±1,±5}
⇒n∈{0,−2,4,−6}⇒n∈{0,-2,4,-6}
Mà n∈Nn∈N
⇒n∈{0,4}⇒n∈{0,4}
Vậy có vô số giá trị nằm trong khoảng 0 đến 1000 sao cho n là số tự nhiên và n≠0,4
gọi d=ƯCLN(3n+2;2n+1)
lập luận d = 1
kết luận\(\frac{3n+1}{2n+1}\)tối giản
Gọi \(\left(3n+2;2n+1\right)=d\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản với mọi STN n
Để phân số\(\frac{3n+2}{7n+1}\)là phân số tối giản thì ƯCLN (3n + 2; 7n + 1) = 1
Bg (11)
Gọi a là ƯCLN (3n + 2; 7n + 1) (a \(\inℕ^∗\))
=> 3n + 2 \(⋮\)a và 7n + 1 \(⋮\)a
=> 7(3n + 2) - 3(7n + 1) = 11 \(⋮\)a
=> a \(\in\)Ư (11)
Ư (11) = {1; 11)
Xét a = 11
=> 3n + 2 \(⋮\)11 và 7n + 1 \(⋮\)11
=> 7n + 1 - 2(3n + 2) = n - 3 \(⋮\)11
=> n = 11k + 3 (k \(\inℕ\))
Mà a phải = 1 nên n \(\ne\)11k + 3
=> n = 11k; n = 11k + 1; n = 11k + 2; n = 11k + 4; n = 11k + 5; n = 11k + 6; n = 11k + 7; n = 11k + 8; n = 11k + 9; n = 11k + 10.
Trong đời ai cũng sẽ có lúc sai...
gọi d là ước nguyên tố chung của 3n + 2 và 7n + 1
ta có : 3n + 2 chia hết cho d ; 7n + 1 chia hết cho d
=> 7( 3n + 2) chia hết cho d ; 3( 7n + 1) chia hết cho d
=> ( 21n + 14) - ( 21n + 3) chia hết cho d
=> 11 chia hết cho d
=> d = 11
ta có : 3n + 2 chia hết cho 11
=> 3n + 11 - 9 chia hết cho 11
=> 3n - 9 : hết cho 11
=> 3n ko chia hết cho 11
vì ( 3 ; 11) = 1
=> n ko chia hết cho 11
=> n ∈11k => p/s tối giản
Đặt \(d=\left(1-3n,2n-3\right)\).
Suy ra \(\hept{\begin{cases}1-3n⋮d\\2n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2-6n⋮d\\6n-9⋮d\end{cases}}\Rightarrow\left(2-6n\right)+\left(6n-9\right)=-7⋮d\)
\(\Rightarrow\orbr{\begin{cases}d=1\\d=7\end{cases}}\).
Để \(\frac{1-3n}{2n-3}\)là phân số tối giản thì \(d=1\).
\(d\ne7\Rightarrow1-3n\ne7k\Leftrightarrow n\ne\frac{1-7k}{3},\left(k\inℤ\right)\).
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)
Nhận xét:
Vì n là số tự nhiên nên 3n + 2 > n - 1 (Điều đó hiển nhiên đúng :))
Bg
Để phân số C = \(\frac{3n+2}{n-1}\) là phân số tối giản thì 3n + 2 \(⋮\)n - 1
Ta có: 3n + 2 \(⋮\)n - 1 (n \(\inℕ^∗\)và 1 < n < 2021)
=> 3n + 2 - [3(n - 1)] \(⋮\)n - 1.
=> 5 \(⋮\)n - 1
=> n - 1 \(\in\)Ư (5)
Ư (5) = {1; 5}
=> n - 1 = 1 hay 5
n = 1 + 1 hay 5 + 1
n = 2 hay 6
Vậy n = 2 hay n = 6