Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2019 = 3*673
n^3 +2019 chia hết cho 6 => n^3 + 2019 chia hết cho 3
Mà 2019 chia hết cho 3 nên n^3 chia hết cho 3 => n chia hết cho 3.
n^3 + 2019 chia hết cho 6 => n^3 + 2019 chia hết cho 2
Mà 2019 là số lẻ nên n^3 phải lẻ => n lẻ
Vậy n là số lẻ chia hết cho 3 thì n^3 + 2019 chia hết cho 6 (3,9,...,2019)
Số tự nhiên n thỏa mãn: (2019-3)/6 + 1 = 337
a) số nhỏ nhất có tám chữ số khác nhau 12345678 chia cho 1111 được thưong nguyên là 11112.
Quy trình: X=X+1:1111X, CALC X? 11112, ==... Đến khi X=X+1=11115 ta được kết quả so nhỏ nhất cần tìm là 12348765.
b) số lon nhất có tám chữ số khác nhau 87654321 chia cho 1111 được thưong nguyên là 78896.
Quy trình: X=X-1:1111X, CALC X? 78897, ==... Đến khi X=X+1=78894 ta được kết quả so lon nhất cần tìm là 12348765.
Đặt \(n^2+2021=k^2\left(k\in N\right)\)
\(\Rightarrow k^2-n^2=2021\\ \Rightarrow\left(k-n\right)\left(k+n\right)=2021\)
Mà \(k,n\in N\)
\(\Rightarrow\left(k-n\right)\left(k+n\right)=2021\cdot1=43\cdot47\)
\(\left\{{}\begin{matrix}k-n=2021\\k+n=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=1011\\n=-1010\left(loại\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}k-n=1\\k+n=2021\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=1011\\n=1010\end{matrix}\right.\left(nhận\right)\)
\(\left\{{}\begin{matrix}k-n=43\\k+n=47\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=45\\n=2\end{matrix}\right.\left(nhận\right)\)
\(\left\{{}\begin{matrix}k-n=47\\k+n=43\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=45\\n=-2\left(loại\right)\end{matrix}\right.\)
Vậy \(n\in\left\{2;1010\right\}\)
Giả sử n2+2021 là SCP
\(Đặtn^2+2021=k^2\left(k\in N\right)\\ \Rightarrow n^2-k^2=-2021\\ \Rightarrow\left(n-k\right)\left(n+k\right)=-2021\)
Vì \(n,k\in N\Rightarrow\left\{{}\begin{matrix}n-k< n+k\\n-k,n+k\in Z\\n-k,n+k\inƯ\left(-2021\right)\end{matrix}\right.\)
Ta có bảng:
n-k | -43 | -47 |
n+k | 47 | 43 |
n | 2 | -2 |
Mà n∈N⇒n=2
Vậy n=2