K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

Số có 4 chữ số có dạng

Số phần tử của không gian mẫu: n(S)=9.9.8.7=4536.

Gọi A: “ tập hợp các số tự nhiên có 4 chữ số phân biệt và lớn hơn 2500.”

TH1: a>2

Chọn a: có 7 cách chọn.

Chọn b: có 9 cách chọn.

Chọn c: có 8 cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có:7.9.8.7=3528 .

 

TH2: a=3; b>5

Chọn a: có 1 cách chọn.

Chọn b: có 4 cách chọn.

Chọn c: có 8cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có: 1.4.8.7=224  (số).

 

TH3: a=2; b=5; c>0

Chọn a: có 1 cách chọn.

Chọn b: có1  cách chọn.

Chọn c: có 7 cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có: 1.1.7.7=49(số).

 

TH4. a=2; b=5; c=0 ;d>0

Chọn a: có 1 cách chọn.

Chọn b: có 1 cách chọn.

Chọn  c: có 1 cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có: 1.1.1.7=7(số).

Như vậy: n(A)=3528+224+49+7=3808

Chọn C.

26 tháng 3 2017

Xét số    được lập từ các chữ số thuộc tập A.

Vì x lẻ nên e {1; 3; 5; 7} , suy ra có 4 cách chọn e. Bốn chữ số còn lại được chọn từ 7 chữ số của tập A \ {e} nên có   cách

Suy ra, có  4.840=3360 số lẻ gồm năm chữ số khác nhau.

Mà số x bắt đầu bằng 123 có   số.

Vậy số x thỏa yêu cầu bài toán là :3360- 20=3340  số.

Chọn A.

11 tháng 11 2016

có 18 số cần tìm.

gọi số cần tìm là abc

xét a=1, c có 3 cách chọn(0,2,8), b có 4 cách => có 3*4=12

xét abc<270, a=2, nếu c=8 thì b có 3 cách, nếu c=0 thì b có 2 cách => có 1*1*3+1*1*2=6

xét 270 đến 278, ko có số thảo mãn

27 tháng 12 2017

gọi 3 chữ số có dang abc

chọn a có 6c

chọn b \ a có 5c

chọn c \a\b có 4 c

=> có 120 c

x^3-x^2(m+3)+x(3m+2)-2m=0

=>(x-1)(x^2-(m+2)x+2m)=0

=>x=1 hoặc x^2-(m+2)x+2m=0

Để PT có 3 nghiệm thì (m+2)^2-4*2m>0 và 1^2-(m+2)+2m<>0

=>m<>1 và m<>2

=>x2=(m+2-m+2)/2=2 và x3=(m+2+m-2)/2=m

Để tạo thành cấp sô nhân thì

x1<x2<m hoặc  m<x1<x2  hoặc x1<m<x2

=>m*1=2^2 hoặc 2m=1 hoặc m^2=2

=>m=4 hoặc m=1/2 hoặc m=căn 2

6 tháng 12 2017

Chọn D.

Ta có 

Vậy để  thì . Vì a và b là các số nguyên dương nên suy ra a = 5k, b = 3k với k nguyên dương. Do đó ab = 15k2.

+ 15k2 = 15 k2 = 1 k = 1 ab = 15.

+ 15k2 = 60 k2 = 4 k = 2 ab = 60.

+ 15k2 = 240 k2 = 16 k = 4 ab = 240.

Vậy cả ba đáp án đều đúng.

4 tháng 3 2017

Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 3)

Chọn C.