Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
*) Ta có:
*) Tính n(A): Giả sử 8 chữ số được viết vào 8 ô trống được đánh số từ 1 đến 8
TH1: Xếp bất kỳ
Xếp hai chữ số 1, hai chữ số 2 và 4 chữ số còn lại: Có (cách).
TH2: Số các cách xếp sao cho không thỏa mãn yêu cầu bài toán
Xếp hai chữ số 1 đứng liền nhau: Có cách.
Xếp hai chữ số 2 đứng liền nhau: Có cách.
Số các cách xếp thuộc cả hai trường hợp trên:
+ Coi hai chữ số 1đứng liền nhau là nhóm X, hai chữ số 2 đứng liền nhau là nhóm Y
+ Xếp X, Y và 4 số còn lại có: (cách)
Vậy số cách xếp không thỏa mãn yêu cầu là: (cách)
Vậy
Lời giải:
Số số lập được: \(A^4_9=3024\)
Tính tổng:
Trong số 3024 số được lập ra, mỗi chữ số $1,2,3,...,9$ xuất hiện $8.7.6=336$ lần ở mỗi vị trí hàng nghìn- trăm- chục - đơn vị.
Do đó tổng các số tìm được là:
$(1+2+3+...+9).336(10^3+10^2+10+1)=16798320$
Đáp án B
Số các số lẻ có 4 chữ số
Chữ số hàng đơn vị có 3 cách chọn
chữ số hàng nghìn có 4 cách chọn
chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn
Do đó có: 3.4.4.3 = 144 số
Số các số lẻ có 4 chữ số và không có chữ số 3 là
2.3.2.3 = 36
Vậy có 144 - 36 = 108 số
Đáp án B
Xét các số lẻ có 4 chữ số được lập từ các số trên có: 3.4.4.3 = 144 số
Xét các số lẻ có 4 chữ số được lập từ 4 số trên và không có mặt chữ số 3 có: 2.3.3.2 = 36 số
Do đó có 144 - 36 = 108 thỏa mãn.
Đáp án A
Gọi a 1 a 2 a 3 a 4 ¯ là số lẻ có 4 chữ số khác nhau, với a 1 , a 2 , a 3 , a 4 ∈ { 0 , 1 , 2 , 3 , 5 , 8 } => a4 có 3 cách chọn, a1 có 4 cách chọn, a2 có 4 cách chọn và a3 có 3 cách chọn. Khi đó, có 3.4.4.3 = 144 số thỏa mãn yêu cầu trên.
Gọi b 1 b 2 b 3 b 4 là số lẻ có 4 chữ số khác nhau, với b 1 , b 2 , b 3 , b 4 ∈ 0 ; 1 ; 2 ; 5 ; 8 => b4có 2 cách chọn, b1 có 3 cách chọn, b2 có 3 cách chọn và b3 có 2 cách chọn. Do đó, có 2.3.3.2 = 36 số thỏa mãn yêu cầu trên.
Vậy có tất cả 144 - 36 = 108 số thỏa mãn yêu cầu bài toán.
Ta có các trường hợp sau xảy ra:
Trường hợp 1: Số tạo thành gồm 3 chữ số lẻ và 4 chữ số chẵn:
Bước 1: Chọn 3 số lẻ trong 5 số lẻ, có cách.
Bước 2: Xếp 3 số lẻ vừa chọn với 4 chữ số chẵn thành một dãy, có 7! cách xếp.
Vậy có số.
Trường hợp 1: Số tạo thành gồm 5 chữ số lẻ và 2 chữ số chẵn:
Bước 1: Chọn 2 chữ số chẵn trong 4 số chẵn, có cách.
Bước 2: Xếp 2 chữ số chẵn vừa chọn với 5 chữ số lẻ thành một dãy, có 7! Cách xếp.
Vậy có số.
Kết luận có 50400+30240=80640 số thỏa yêu cầu.
Chọn A.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
\(\Rightarrow\) d có 5 cách chọn (từ 1;3;5;7;9)
a có 8 cách chọn (khác 0 và d)
b có 8 cách chọn (khác a và d)
c có 7 cách chọn (khác a;b;c)
\(\Rightarrow\) có \(5.8.8.7=2240\) số