K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 12 2020

Số số thỏa mãn: \(A_6^5=720\)

19 tháng 12 2020

Cảm ơn bạn

3 tháng 9 2019

Đáp án D.

8 tháng 8 2019

Chọn D

*) Ta có: 

*) Tính n(A): Giả sử 8 chữ số được viết vào 8 ô trống được đánh số từ 1 đến 8

TH1: Xếp bất kỳ

Xếp hai chữ số 1, hai chữ số 2 và 4 chữ số còn lại: Có (cách).

TH2: Số các cách xếp sao cho không thỏa mãn yêu cầu bài toán

Xếp hai chữ số 1 đứng liền nhau: Có  cách.

Xếp hai chữ số 2 đứng liền nhau: Có  cách.

Số các cách xếp thuộc cả hai trường hợp trên:

+ Coi hai chữ số 1đứng liền nhau là nhóm X, hai chữ số 2 đứng liền nhau là nhóm Y

+ Xếp X, Y và 4 số còn lại có:  (cách)

Vậy số cách xếp không thỏa mãn yêu cầu là:  (cách)

Vậy 

16 tháng 10 2021

còn cái nịt

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Lời giải:

Số số lập được: \(A^4_9=3024\) 

Tính tổng:

Trong số 3024 số được lập ra, mỗi chữ số $1,2,3,...,9$ xuất hiện $8.7.6=336$ lần ở mỗi vị trí hàng nghìn- trăm- chục - đơn vị.

Do đó tổng các số tìm được là:

$(1+2+3+...+9).336(10^3+10^2+10+1)=16798320$

 

15 tháng 12 2017

Đáp án B

Số các số lẻ có 4 chữ số

Chữ số hàng đơn vị có 3 cách chọn

chữ số hàng nghìn có 4 cách chọn

chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn

Do đó có: 3.4.4.3 = 144 số

Số các số lẻ có 4 chữ số và không có chữ số 3 là

2.3.2.3 = 36

Vậy có 144 - 36 = 108 số

28 tháng 11 2018

Đáp án B

Xét các số lẻ có 4 chữ số được lập từ các số trên có: 3.4.4.3 = 144 số

Xét các số lẻ có 4 chữ số được lập từ 4 số trên và không có mặt chữ số 3 có: 2.3.3.2 = 36 số

Do đó có 144 - 36 = 108 thỏa mãn.

26 tháng 3 2019

Đáp án A

Gọi a 1 a 2 a 3 a 4 ¯  là số lẻ có 4 chữ số khác nhau, với a 1 ,   a 2 ,   a 3 ,   a 4 ∈ { 0 ,   1 ,   2 ,   3 ,   5 ,   8 }  => a4 có 3 cách chọn, a1 có 4 cách chọn, a2 có 4 cách chọn và a3 có 3 cách chọn. Khi đó, có 3.4.4.3 = 144 số thỏa mãn yêu cầu trên.

Gọi b 1 b 2 b 3 b 4  là số lẻ có 4 chữ số khác nhau, với b 1 ,   b 2 ,   b 3 ,   b 4 ∈ 0 ;   1 ;   2 ;   5 ;   8 => b4có 2 cách chọn, b1 có 3 cách chọn, b2 có 3 cách chọn và b3 có 2 cách chọn. Do đó, có 2.3.3.2 = 36 số thỏa mãn yêu cầu trên.

Vậy có tất cả 144 - 36 = 108 số thỏa mãn yêu cầu bài toán.

2 tháng 11 2017

Ta có các trường hợp sau xảy ra:

Trường hợp 1: Số tạo thành gồm 3 chữ số lẻ và 4 chữ số chẵn:

Bước 1: Chọn 3 số lẻ trong 5 số lẻ, có  cách.

Bước 2: Xếp 3 số lẻ vừa chọn với 4 chữ số chẵn thành một dãy, có 7! cách xếp.

Vậy có số.

Trường hợp 1: Số tạo thành gồm 5 chữ số lẻ và 2 chữ số chẵn:

Bước 1: Chọn 2 chữ số chẵn trong 4 số chẵn, có  cách.

Bước 2: Xếp 2 chữ số chẵn vừa chọn với 5 chữ số lẻ thành một dãy, có 7! Cách xếp.

Vậy có số.

Kết luận có 50400+30240=80640 số thỏa yêu cầu.

Chọn A.

NV
17 tháng 9 2021

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

\(\Rightarrow\) d có 5 cách chọn (từ 1;3;5;7;9)

a có 8 cách chọn (khác 0 và d)

b có 8 cách chọn (khác a và d)

c có 7 cách chọn (khác a;b;c)

\(\Rightarrow\) có \(5.8.8.7=2240\) số