Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Gọi a = a 1 a 2 a 3 a 4 a 5 là số thỏa mãn yêu cầu đề bài. Theo giả thiết a 1 < a 2 < a 3 < a 4 < a 5 , a 1 ≠ 0
Do đó số thỏa mãn yêu cầu bài toán sẽ không chứa chữ số 0. Tức là các chữ số của a sẽ được chọn từ tập S={1;2;3;4;…;9}. Dễ thấy với mỗi tập con có 5 phần tử của S chỉ có một cáp xếp duy nhất thỏa mãn a 1 < a 2 < a 3 < a 4 < a 5 , a 1 ≠ 0 . Vậy số các số thỏa mãn yêu cầu bào toán là: 126 số.
Đáp án C
Vì số tự nhiên đó gồm có 3 chữ số chẵn và số đứng sau lớn hơn số đứng trước nên trong số tự nhiên đó không chứa số 0
Với mỗi bộ gồm 7 chữ số ta đều sắp xếp được chúng thành một dãy tăng dần
Vậy số cách lập số tự nhiên thỏa mãn đề bài là: C 4 3 . C 5 4 = 20
Đáp án B
Mỗi số thỏa mãn điều kiện bài toán gồm 3 số chẵn và 4 số lẻ, do sắp xếp từ bé đến lớn nên với 7 số chọn ra chỉ có duy nhất một cách sắp xếp.
+) Số cách chọn ra 3 số chẵn từ 5 số chẵn là: C 5 3
+) Số cách chọn ra 4 số lẻ từ 5 số chẵn là: C 5 4
Vậy tổng số các chữ số thỏa mãn điều kiện bài toán là: C 5 3 . C 5 4 = 10.5 = 50
Đáp án B
Số các số có chín chữ số khác nhau là 9!. Trong 9! số này, số các số mà chữ số 1 đứng trước chữ số 2 hoặc chữ số 1 đứng sau chữ số 2 là bằng nhau. Do đó, số các số mà chữ số 1 đứng trước chữ số 2 là 9 ! 2 .
Tương tự, số các số mà chữ số 1 đứng trước chữ số 2 và chữ số 3 đứng trước chữ số 4 là 9 ! 4 .
Số các số cần tìm là 9 ! 8 = 45360.