Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nhỏ nhất chia hết cho 2,3,5 là : 30 do 30 có 2 chữ số nên ta nhân thêm 30 x 4 = 120
Ta tìm số lớn nhất : 999 : 120 = 8 (dư 39 ) vậy lớn nhất còn là 3 chữ số là : 999 - 39 = 960
Ta có dãy số : 120 ; 150; 180;...........960 (mỗi số cách nhau 30)
Số các số là : (960 - 120 ) : 30 + 1 = 29 số
đáp số : 29
là các chữ số có tận cùng 0
mà có :
9 cách chọn hàng nghìn
8 cách chọn hàng trăm
7 cách chọn hàng chục
1 cách chọn hàng đơn vị
có tất cả :
9 x 8 x7 x 1 = 504 ( số )
Đ/s : 504 số
là các chữ số có tận cùng 0
mà có :
9 cách chọn hàng nghìn
8 cách chọn hàng trăm
7 cách chọn hàng chục
1 cách chọn hàng đơn vị
có tất cả :
9 x 8 x7 x 1 = 504 ( số )
Đ/s : 504 số
Gọi các số cần tìm có dạng abcd0. Có 9 cách chọn
Có 8 cách chon b
Có 7 cách chọn c
Có 6 cách chọn d
Vậy số cách số có 5 chữ số khác nhau chia hết cho cả 2 và 5 là: 9x8x7x6=3024
số lớn nhất có ba chữ số chia hết cho 2,5,9 là:990
số bé nhất chia hết cho 2,5,9 là:180
khoảng cách giữa các số đó là:270-180=90
vậy ta có (990-180):90+1=10 so
mỗi số trên tưng ứng với: (số lớn nhất - số bé nhất ) : khoảng cách +1
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
- Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99.
- Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát.
- Khi đó, ta có A < 5 (nếu A ≥ 5 thì AB ≥ 50, vượt quá giới hạn của số có hai chữ số).
- Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.
Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
- ABC chia hết cho 9.
- A + C chia hết cho 5.
Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
- Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương).
- Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15.
- Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9.
- Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990.
- Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.
Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n