Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3xy+x-y=1
<=> 3xy+x=y+1
<=> x(3y+1)=y+1;
Nếu x=0 =>y=-1.
Nếu x≠0
Do: x(3y+1)=y+1;
=> y+1 ⋮ 3y+1.
=> 3y+3 ⋮ 3y+1.
=> (3y+1)+2 ⋮ 3y+1
=> 2 ⋮ 3y+1
=> 3y+1 có thể có các giá trị: -2, -1; 1; 2.
3y+1=-2 => y=-1; => x=0 (loại).
3y+1=-1 => y=-2/3 (loại).
3y+1= 1 => y= 0; => x=1 (nhận).
3y+1= 2 => y= 1/3 (loại).
Vậy pt chỉ có 2 cặp nghiệm nguyên: (x=0; y=-1) và (x=1; y=0).
3xy+x-y=1
<=> 3xy+x=y+1
<=> x(3y+1)=y+1;
Nếu x=0 =>y=-1.
Nếu x≠0
Do: x(3y+1)=y+1;
=> y+1 ⋮ 3y+1.
=> 3y+3 ⋮ 3y+1.
=> (3y+1)+2 ⋮ 3y+1
=> 2 ⋮ 3y+1
=> 3y+1 có thể có các giá trị: -2, -1; 1; 2.
3y+1=-2 => y=-1; => x=0 (loại).
3y+1=-1 => y=-2/3 (loại).
3y+1= 1 => y= 0; => x=1 (nhận).
3y+1= 2 => y= 1/3 (loại).
Vậy pt chỉ có 2 cặp nghiệm nguyên: (x=0; y=-1) và (x=1; y=0).
ta có :
x,y nguyên thì \(\left|xy\right|\text{ và }\left|x-y\right|\text{ là các số nguyên không âm nên }\orbr{\begin{cases}xy=0\\x-y=0\end{cases}}\)
với \(xy=0\Rightarrow\orbr{\begin{cases}x=0\Rightarrow y=\pm1\\y=0\Rightarrow x=\pm1\end{cases}}\)
với \(x-y=0\Rightarrow x=y=\pm1\)
vậy có 6 cập x,y nguyên thỏa mãn là (0,1) ,(0,-1), (1,0), (-1,0) ,(1,1), (-1,-1)
=>x.(y-2)+3x=11
=>x.(y-2+3)=11
=>x.(y+1)=11
Mà 11=1.11 = 11.1 = (-1).(-11)=(-11).(-1)
Ta có bảng sau:
x | 1 | -1 | 11 | -11 |
y+1 | 11 | -11 | 1 | -1 |
y | 10 | -12 | 0 | -2 |
Vậy có 4 cặp(x;y) thỏa mãn
xy-3x+2y=11
xy-3x+2y=5+6
xy-3x+2y-6=5
<2y+2y>-<3x+6>=5
y<x+2>-3<x+2>=5
<x+2>.<x-3>thuộc ư<5>
ư<5>={1;5}
Vì x+2 lớn hơn hoặc bằng 2
suy ra ta có x+2=5 suy ra x=5-2=3
y-3=1 suy ra y =1+3=4
Vậy ta có 1 cặp số nguyên <x;y> là x=3
y=4
****
xy+3x-2y=11
<=>xy+3x-2y-6=5
<=>x(y+3)-2(y+3)=5
<=>(x-2)(y+3)=5
Lập bảng,tìm đc 4 cặp (x;y) thỏa mãn
xy + 3x - 2y = 11
xy + 3x - 2y + 6 = 11 + 6
x(y + 3) - 2(y + 3) = 17
(x - 2)(y + 3) = 17
(x - 2)(y + 3) = -17.(-1) = (-1).(-17) = 1.17 = 17.1
Vì -2 ; 3 là các số nguyên
Vậy có 4 cặp (x;y) thõa mãn
xy+3x-2y=11
<=>xy+3x-2y-6=5
<=>x(y+3)-2(y+3)=5
<=>(y+3)(x-2)=5
lập bảng,ta có 4 cặp (x;y) thỏa mãn