Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số cách xếp ngẫu nhiên:
Chọn ra 6 trong 12 học sinh rồi xếp vào bàn dài có cách xếp;
6 học sinh còn lại xếp vào bàn tròn có (6-1)!=5! cách xếp.
Vậy có tất cả cách xếp ngẫu nhiên.
Ta tìm số cách xếp mà A, B cùng ngồi 1 bàn và ngồi cạnh nhau:
TH1: A, B ngồi cùng bàn dài và cạnh nhau có cách;
TH2: A, B ngồi cùng bàn tròn và cạnh nhau có cách.
Vậy có tất cả cách xếp thoả mãn.
Xác suất cần tính bằng
Chọn đáp án B.
*Chú ý số cách xếp n học sinh vào 1 bàn tròn bằng (n−1)! cách.
Chọn đáp án B.
Chọn C
Tiến hành theo các bước sau:
Bước 1: Xếp 6 nam ngồi quanh bàn tròn, có 5! Cách xếp.
Bước 2: Vì 6 nam ngồi quanh bàn tròn nên có 6 khoảng trống để xếp 6 người nữ, vậy có 6! Cách xếp.
Theo quy tắc nhân ta có 5!.6! = 86 400 cách.
Chọn A
Số cách để xếp người vào bàn tròn là : 7!=5040(cách)
Để xếp cho hai nữ không ngồi cạnh nhau, trước tiên ta xếp nam trước: 4!=24(cách)
Giữa nam có 5 chỗ trống, số cách để xếp 3 nữ vào 5 chỗ trống là:
Vậy xác suất để xếp cho hai nữ không ngồi cạnh nhau là: