Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B.
• Kí hiệu số ghế là 1;2;3;4;5;6.
• Xếp trước 3 nam ngồi ở vị trí số lẻ và 3 nữ ngồi ở vị trí số chẳn và ngược lại
Ta có: 3 ! . 3 ! . 2 ! = 72
Đáp án B
Số phần tử KGM là: 9!. Mà số phần tử của biến cố các học sinh nữ luôn ngồi cạnh nhau là: 3!7!
Xác suất để các học sinh nữ luôn ngồi cạnh nhau là: 3!7! 9! = 1 12
Xét 2 khả năng:
+) Trường hợp ở giữa có 3 ghế có thể xếp nam ở bên phải hoặc trái nên số cách xếp
là 2 . 4! . 2! = 96
+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống. Tương ứng số cách sắp xếp là 2 . 2 . 4! . 2! = 192
Vậy số cách sắp xếp là 192 + 96 = 288
Đáp án cần chọn là C
Chọn A
Số cách để xếp người vào bàn tròn là : 7!=5040(cách)
Để xếp cho hai nữ không ngồi cạnh nhau, trước tiên ta xếp nam trước: 4!=24(cách)
Giữa nam có 5 chỗ trống, số cách để xếp 3 nữ vào 5 chỗ trống là:
Vậy xác suất để xếp cho hai nữ không ngồi cạnh nhau là:
Chọn C
Tiến hành theo các bước sau:
Bước 1: Xếp 6 nam ngồi quanh bàn tròn, có 5! Cách xếp.
Bước 2: Vì 6 nam ngồi quanh bàn tròn nên có 6 khoảng trống để xếp 6 người nữ, vậy có 6! Cách xếp.
Theo quy tắc nhân ta có 5!.6! = 86 400 cách.