K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

Chọn A

Số cách để xếp người vào bàn tròn là : 7!=5040(cách)

Để xếp cho hai nữ không ngồi cạnh nhau, trước tiên ta xếp nam trước: 4!=24(cách)

Giữa nam có 5 chỗ trống, số cách để xếp 3 nữ vào 5 chỗ trống là: 

Vậy xác suất để xếp cho hai nữ không ngồi cạnh nhau là: 

14 tháng 4 2017

29 tháng 6 2017

Đáp án B

 Số phần tử KGM là: 9!. Mà số phần tử của biến cố các học sinh nữ luôn ngồi cạnh nhau là: 3!7! 

Xác suất để các học sinh nữ luôn ngồi cạnh nhau là:  3!7! 9! =   1 12

14 tháng 4 2018

Chọn B.

Phương pháp: Sử dụng hoán vị và quy tắc nhân.

Cách giải: Xếp 12 học sinh vào 12 ghế có 12! cách xếp.

Đánh số ghế  như sau:

1

2

3

4

5

6

7

8

9

10

11

12

Chọn giới tính nam hoặc nữ có 2 cách.

Xếp nam hoặc nữ ngồi vào các ghế 1, 3, 5, 8, 10,12 có 6!= 720 cách.

Xếp các bạn giới tính còn lại vào 6 ghế còn lại có 6!= 720cách.

3 tháng 12 2018

Chọn đáp án A

Kí hiệu Nam: l và Nữ: ¡. Ta có

Có 2 trường hợp Nam, nữ ken kẽ nhau và 4 trường hợp hai bạn Nữ ngồi cạnh nhau.

Trường hợp 1. Nam nữ ngồi xen kẽ nhau gồm:

Nam phía trước: l¡l¡l¡l¡l¡.

Nữ phía trước: ¡l¡l¡l¡l¡l.

Trường hợp 2. Hai bạn nữ ngồi cạnh nhau: l¡¡l¡l¡l¡l Hoặc

l¡l¡¡l¡l¡l. Tương tự ta có thêm 2 trường hợp nữa. Các bước xếp như sau:

B1: Xếp 5 bạn nam. B2: Xếp cặp Tự - Trọng. B3: Xếp các bạn nữ còn lại. Khi đó số kết quả xếp cho 2 trường hợp trên như sau:

24 tháng 6 2018

Gọi X là biến cố: "Anh A và chị B ngồi cạnh nhau"

Chọn vị trí cho cặp A, B ngồi có 2 cách là: {3,4}, {4,5}

Xếp A, B vào ghế có 2!

Xếp 3 người còn lại vào 3 vị trí còn lại, có 3! cách.

5 tháng 1 2017

Số phần tử không gian mẫu là: 

Gọi X là biến cố: " Anh A và chị B ngồi cạnh nhau ".

● Chọn vị trí cho cặp A, B ngồi có 2 cách là: 

    Xếp A, B vào ghế có 2!

● Xếp 3 người còn lại vào 3 vị trí còn lại, có: 3! cách

Suy ra số phần tử của biến cố: 

Vậy xác suất cần tính P(X) =  1 5

Chọn C.

5 tháng 3 2019

Đáp án A.

Đặt Ω  là không gian mẫu. Ta có n Ω = 2 8 = 256 .

Gọi A là biến cố “Không có hai người nào ngồi cạnh nhau phải đứng dậy”.

- TH1: Không có ai tung được mặt ngửa. Trường hợp này có 1 khả năng xảy ra.

- TH2: Chỉ có 1 người tung được mặt ngửa. Trường hợp này có 8 khả năng xảy ra.

- TH3: Có 2 người tung được mặt ngửa nhưng không ngồi cạnh nhau: Có 8.5 2 = 20  khả năng xảy ra (do mỗi người trong vòng tròn thì có 5 người không ngồi cạnh).

- TH4: Có 3 người tung được mặt ngửa nhưng không có 2 người nào trong 3 người này ngồi cạnh nhau. Trường hợp này có C 8 3 − 8 − 8.4 = 16  khả năng xảy ra.

Thật vậy:

+ Có  C 8 3    cách chọn 3 người trong số 8 người.

+ Có 8 khả năng cả ba người này ngồi cạnh nhau.

+ Nếu chỉ có 2 người ngồi cạnh nhau. Có 8 cách chọn ra một người, với mỗi cách chọn ra một người có 4 cách chọn ra hai người ngồi cạnh nhau và không ngồi cạnh người đầu tiên (độc giả vẽ hình để rõ hơn). Vậy có 8.4 khả năng.

- TH5: Có 4 người tung được mặt ngửa nhưng không có 2 người nào trong 4 người này ngồi cạnh nhau. Trường hợp này có 2 khả năng xảy ra.

Suy ra 

n A = 1 + 8 + 20 + 16 + 2 = 47 ⇒ P A = 47 256

10 tháng 5 2019

Đáp án A