Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )
Thời gian đi của ô tô thứ nhất:
\(t_1=\dfrac{s}{2v_1}+\dfrac{s}{2v_2}=\dfrac{s\left(v_1+v_2\right)}{2v_1v_2}\)
Vận tốc trung bình của ô tô thứ nhất:
\(v_{tbA}=\dfrac{s}{t}=\dfrac{2v_1v_2}{v_1+v_2}=\dfrac{2.20.60}{20+60}=30km/h\)
Theo đề ta có: \(s=\dfrac{t_2}{2}v_1+\dfrac{t_2}{2}v_2=t_2\left(\dfrac{v_1+v_2}{2}\right)\)
Vận tốc trung bình của ô tô thứ hai:
\(v_{tbB}=\dfrac{s}{t_2}=\dfrac{v_1+v_2}{2}=\dfrac{20+60}{2}=40km/h\)
Theo đề bài ta có: \(\dfrac{s}{v_A}-\dfrac{s}{v_B}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{s}{30}-\dfrac{s}{40}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{4s}{120}-\dfrac{3s}{120}=\dfrac{60}{120}\)
\(\Leftrightarrow s=60\left(km\right)\)
Vậy hai xe xuất phát cùng lúc sẽ gặp nhau sau:
\(s_1+s_2=s_{AB}\)
\(\Leftrightarrow30t+40t=60\)
\(\Leftrightarrow70t=60\)
\(\Leftrightarrow t=\dfrac{60}{70}\approx0,9\left(h\right)\)
Hai xe gặp nhau tại điểm cách điểm A:
\(s_1=v_A.t=30.0,9=27\left(km\right)\)
Thời gian xe A chạy trên nữa quãng đường đầu:
\(t_1=\dfrac{\dfrac{s_{AB}}{2}}{\upsilon_1}=\dfrac{\dfrac{s_{AB}}{2}}{20}=\dfrac{s_{AB}}{2.20}=\dfrac{s_{AB}}{40}\left(h\right)\)
Thời gian xe A chạy trên nữa quãng đường sau:
\(t_2=\dfrac{\dfrac{s_{AB}}{2}}{\upsilon_2}=\dfrac{\dfrac{s_{AB}}{s}}{60}=\dfrac{s_{AB}}{2.60}=\dfrac{s_{AB}}{120}\left(h\right)\)
Vận tốc trung bình của xe A trên cả quãng đường AB:
\(\upsilon_{tbA}=\dfrac{\dfrac{s_{AB}}{2}+\dfrac{s_{AB}}{2}}{\dfrac{s_{AB}}{40}+\dfrac{s_{AB}}{120}}=\dfrac{s_{AB}}{\dfrac{s_{AB}}{40}+\dfrac{s_{AB}}{120}}=\dfrac{s_{AB}}{\dfrac{s_{AB}}{30}}=30\left(km/h\right)\)
Quãng đường mà xe B đi được trong nữa thời gian đầu:
\(s_1=\upsilon_1.\dfrac{t}{2}=20.\dfrac{t}{2}=10t\left(km\right)\)
Quãng đường xe B đi được trong nữa thời gian sau:
\(s_2=\upsilon_2.\dfrac{t}{2}=60.\dfrac{t}{2}=30t\left(km\right)\)
Vận tốc trung bình của xe B trên cả quãng đường AB:
\(\upsilon_{tbB}=\dfrac{s_1+s_2}{\dfrac{t}{2}+\dfrac{t}{2}}=\dfrac{10t+30t}{t}=\dfrac{40t}{t}=40\left(km/h\right)\)
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )
mink có câu trả lời rùi
có ai có nhu cầu cần trả lời thì nói mink nha
đối với ô tô 1:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}\)
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}\)
vận tốc trung bình ô tô 1 là:
\(v_{tb1}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{2v_1}+\frac{S}{2v_2}}=\frac{1}{\frac{1}{2v_1}+\frac{1}{2v_2}}=\frac{2v_1v_2}{v_1+v_2}\)
đối với ô tô thứ hai :
\(S_1=v_1t_1=\frac{v_1t}{2}\)
\(S_2=v_2t_2=\frac{v_2t}{2}\)
vận tốc trung bình của ô tô hai là:
\(v_{tb2}=\frac{S_1+S_2}{t}=\frac{\frac{v_1t+v_2t}{2}}{t}=\frac{v_1+v_2}{2}\)
ta lấy vận tốc trung bình của ô tô 1 trừ cho của ô tô 2 thì:
\(\frac{2v_1v_2}{v_1+v_2}-\frac{v_1+v_2}{2}=\frac{4v_1v_2-\left(v_1+v_2\right)^2}{2\left(v_1+v_2\right)}\)
\(=\frac{4v_1v_2-v_1^2-2v_1v_2-v_2^2}{2\left(v_1+v_2\right)}=\frac{-\left(v_1-v_2\right)^2}{2\left(v_1+v_2\right)}\)
do (v1-v2)2 luôn luôn lớn hơn hoặc bằng 0 nên:
-(v1-v2)2<0
từ đó ta suy ra vận tốc trung bình của ô tô 1 bé hơn vận tốc trung bình của ô tô 2 nên ô tô 2 đến trước
(do bạn không cho biết v1 và v2 nên mình không biết tính thời gian ra sao)
(a) Xét ô tô thứ nhất: \(t_{11}=t_{12}\)
\(\Leftrightarrow\dfrac{s_{11}}{v_1}=\dfrac{s_{12}}{v_2}\Leftrightarrow s_{12}=\dfrac{v_2}{v_1}s_{11}=\dfrac{75}{50}s_{11}=\dfrac{3}{2}s_{11}\)
Mà: \(t_{11}=\dfrac{1}{2}t_1\Leftrightarrow\dfrac{s_{11}}{v_1}=\dfrac{1}{2}t_1\Leftrightarrow s_{11}=\dfrac{1}{2}v_1t_1=\dfrac{1}{2}\cdot50t_1=25t_1\)
\(\Rightarrow s_{12}=\dfrac{3}{2}s_{11}=\dfrac{3}{2}\cdot25t_1=\dfrac{75}{2}t_1\)
Lại có: \(s=s_1+s_2=25t_1+\dfrac{75}{2}t_1=\dfrac{125}{2}t_1\)
Suy ra thời gian ô tô thứ nhất đi là: \(s=\dfrac{125}{2}t_1\Leftrightarrow t_1=\dfrac{2}{125}s\)
Xét ô tô thứ hai: \(t_2=t_{21}+t_{22}\)
\(=\dfrac{s_{21}}{v_1}+\dfrac{s_{22}}{v_2}=\dfrac{\dfrac{1}{2}s}{50}+\dfrac{\dfrac{1}{2}s}{75}=\dfrac{1}{60}s\)
Ta xét hiệu: \(t_1-t_2=\dfrac{2}{125}s-\dfrac{1}{60}s=-\dfrac{1}{1500}s< 0\)
\(\Rightarrow t_1< t_2\) nên ô tô thứ nhất đến đích trước.
(b) Theo đề: \(t_2-t_1=\dfrac{2}{60}=\dfrac{1}{30}\left(h\right)\)
\(\Leftrightarrow\dfrac{1}{60}s-\dfrac{2}{125}s=\dfrac{1}{30}\Rightarrow s=\dfrac{\dfrac{1}{30}}{\dfrac{1}{60}-\dfrac{2}{125}}=50\left(km\right)\)
a, Gọi nửa thời gian xe 1 đi là :t
\(\Rightarrow V_{tb_1}=\dfrac{S_1+S_2}{t+t}=\dfrac{S_1+S_2}{2t}\)
\(S_1=V_1.t=50t\)
\(S_2=V_2.t=75t\)
\(\Rightarrow V_{tb_1}=\dfrac{S_1+S_2}{2t}=\dfrac{50t+75t}{2t}=62,5\)(km/h)\(\left(1\right)\)
Gọi nửa quãng đường của xe 2 đi là: S
\(\Rightarrow V_{tb_2}=\dfrac{S+S}{t_1+t_2}=\dfrac{2S}{t_1+t_2}\)
\(t_1=\dfrac{S}{V_3}=\dfrac{S}{50}\)
\(t_2=\dfrac{S}{V_4}=\dfrac{S}{75}\)
\(\Rightarrow V_{tb_2}=\dfrac{2S}{t_1+t_2}=\dfrac{2S}{\dfrac{S}{50}+\dfrac{S}{75}}=60\)(km/h)\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) :
\(\Rightarrow\)Ô tô 1 đến đích trước.
b, \(V_{tb_1}=62,5\)(km/h)
\(V_{tb_2}=60\)(km/h)