K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

          A = 1/3 + 2/32 + 3/33 + ... + 100/3100 

=>    3A = 1 + 2/3 + 3/32 + ... + 100/399 

     -    A =       1/3 + 2/32 + ... + 99/399 + 100/ 3100 

________________________________________

=>    2A = 1 + 1/3 + 1/32 + ... + 1/399 + 100/3100 

=>    6A = 3 + 1 + 1/3 + ... + 1/398 + 100/399 

     -  2A = 1 + 1/3 + 1/32 + ... + 1/398 + 1/399 +100/3100 

_____________________________________________

    4A = 3 - 99/399 - 100/3100  <  3

=>    4A  <  3

=>    A  <  3/4

11 tháng 5 2019

Câu 2 sai đề, thử rồi

15 tháng 2 2020

Ta có : A = \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)

=> 5A = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)

=> 5A - A =  \(\left(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\right)\)

=> 4A \(=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

=> 20A = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}\)

Lấy 20A trừ A ta có : 

20A - A = \(\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\right)\)

16A = \(1-\frac{99}{5^{99}}+\frac{99}{5^{100}}=1+99\left(\frac{1}{5^{100}}-\frac{1}{5^{99}}\right)=1-\frac{99.4}{5^{100}}\)

=> A = \(\frac{1}{16}-\frac{99}{4.5^{100}}< \frac{1}{16}\left(\text{ĐPCM}\right)\)

15 tháng 2 2020

Ta có :A=\(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{99}{5^{100}}\)

          5A=\(\frac{1}{5}+\frac{2}{5^2}+.....+\frac{99}{5^{99}}\)

      5A -A=\(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{99}{5^{99}}\right)\)-\(\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{99}{5^{100}}\right)\)

         4A  =\(\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

Đặt B=\(\frac{1}{5}+\frac{1}{5^2}+.....+\frac{1}{5^{99}}\)

         5B=\(1+\frac{1}{5}+...+\frac{1}{5^{98}}\)

  5B - B =\(\left(1+\frac{1}{5}+...+\frac{1}{5^{98}}\right)\)\(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)\)

      4B  =\(1-\frac{1}{5^{99}}\)

 Ta có :4A = B -\(\frac{99}{5^{100}}\)

          16A = 4B -\(\frac{4.99}{5^{100}}\)=\(1-\frac{1}{5^{99}}-\frac{4.99}{5^{100}}\)

              A = \(\frac{1}{16}-\frac{1}{5^{99}.16}-\frac{99}{5^{100}.4}\)\(\frac{1}{16}\)  

              Suy ra: A <\(\frac{1}{16}\)

2 tháng 4 2023

1+1=3 :)))

2 tháng 4 2023

yamate

 

4 tháng 4 2016

a,1/102+1/112+1/122+...+1/1002<1/9.10+1/10.11+1/11.12+...+1/99.100=1/9-1/10+1/10-1/11+...+1/99-1/100

                                                                                                    =1/9-1/100=91/900<3/4

Vậy 1/102+1/112+1/122+...+1/1002<3/4

b,1/22+1/32+1/42+...+1/1002<1/1.2+1/2.3+1/3.4+...+1/99.100=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

                                                                                        =1-1/100=99/100

Vậy 1/22+1/32+1/42+...+1/1002<99/100

c,1/22+1/32+1/42+...+1/1002<1/22+(1/2.3+1/3.3+...+1/99.100)=1/4+(1/2-1/3+1/3-1/4+...+1/99-1/100)

                                                                                       =1/4+(1/2-1/100)=1/4+49/100=74/100<3/4=75/100

Vậy 1/22+1/32+1/42+...+1/1002<3/4