K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=n\left(2n^2+3n+1\right)=n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n-2+3\right)\)

\(=2n\left(n+1\right)\left(n-1\right)+3n\left(n+1\right)\)

Vì n;n+1;n-1 là ba số liên tiếp

nên \(2n\left(n+1\right)\left(n-1\right)⋮3!=6\)

Vì n;n+1 là hai số liên tiếp

nên \(3n\left(n+1\right)⋮3\cdot2=6\)

=>A chia hết cho 6

28 tháng 8 2018

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

\(\left(n^2+n\right)\left(2n+5\right)-\left(n+1\right)\left(n^2+3n\right)\)

\(=2n^3+5n^2+2n^2+5n-\left(n^3+3n^2+n^2+3n\right)\)

\(=2n^3+7n^2+5n-n^3-4n^2-3n\)

\(=n^3+3n^2+2n\)

\(=n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số nguyên liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)

hay \(n\left(n+1\right)\left(n+2\right)⋮6\)

24 tháng 8 2015

2n3 + 3n2 + n = 2n3 + 2n+ n2 + n 

= 2n ( n+1 ) + n ( n+1) = 3n ( n+1)

Vì n là số nguyên nên n và n+1 là 2 số nguyên liên tiếp 

=> 1 trong 2 số n và n+1 có 1 số chẵn

=> n(n+1) chia hết cho 2. Mà 2 và 3 là 2 số nguyên tố cùng nhau 

=> 3.n(n+1) chia hết cho 2.3=6 hay 2n3 + 3n2 +n chia hết cho 6 với mọi số nguyên n

29 tháng 9 2019

a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)\(\forall\)\(\in\)Z

b) (n2 + 3n - 1)(n + 2) - n3  + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)\(\forall\)\(\in\)Z

d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)\(\in\)Z