Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=\(3^{2012}-3^{2011}+3^{2010}-3^{2009}+3^{2008}\)
= \(3^{2008}.\left(3^4-3^3+3^2-3\right)\)
= \(3^{2008}.60\)
Vì \(60⋮10\) => \(3^{2008}.60⋮10\)
Hay \(3^{2012}-3^{2011}+3^{2010}-3^{2009}+3^{2008}⋮10\)
Vậy \(M⋮10\)
Chúc bạn hk tốt !!
Ta có thể xây dựng cách phân tích thừa số đơn giản như sau: \(4018=2.2009\)
Từ đó, dễ dàng thành lập được một biểu thức số có dạng \(P=20092009...200940184018...4018\) luôn chia hết cho \(2009\) \(\text{(}\) với \(x\) là số các số \(2009,\) \(y\) là số các số \(4018\) \(\text{)}\)
Khi đó, tổng các chữ số cần tìm của \(P\) là \(\left(2+0+0+9\right).x+\left(4+0+1+8\right).y=11x+13y\)
Mặt khác, do \(P\) có tổng chữ số là \(2010\) hay nói cách khác \(11x+13y=2010\) \(\left(\alpha\right)\)
Ta phải cần tìm \(x,y\in Z^+\) để thỏa mãn điều kiện phương trình \(\left(\alpha\right)\) có nghiệm
Thật vậy, nhận thấy \(x=y=0\) không là nghiệm của phương trình \(\left(\alpha\right)\)
Do đó, từ \(\left(\alpha\right),\)suy ra \(x=\frac{2010-13y}{11}=183-y-\frac{2y+3}{11}\)
Để \(x\in N\) thì \(\frac{2y+3}{11}\in N\) tức là \(2y+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Với chú ý rằng \(2y+3>3\) (do \(y>0\) ), kết hợp với điều ở trên, ta suy ra được \(2y+3=11\)
Hay \(y=8\) \(\left(\beta\right)\)
Từ \(\left(\alpha\right),\) \(\left(\beta\right)\) dễ dàng tính được \(x=178\) \(\left(\text{ t/m ĐK}\right)\)
Vậy, với \(P=20092009...200940184018...4018\) \(\text{(}\) trong đó, có \(178\) số \(2009,\) \(8\) số \(4018\) \(\text{)}\) thì thỏa mãn yêu cầu đề bài đã cho, nghĩa là có ít nhất một số tự nhiên tồn tại chia hết cho \(2009\) với tổng các chữ số là \(2010\)
CMR tồn tại 1 số tự nhiên chia hết cho 2009 có tổng các chữ số là 2010 2009
a) \(2010^{100}+2010^{99}\)
\(=2010^{99}\left(2010+1\right)\)
\(=2010^{99}.2011⋮2011\left(dpcm\right)\)
b) \(3^{1994}+3^{1993}-3^{1992}\)
\(=3^{1992}\left(3^2+3-1\right)\)
\(=3^{1992}.11⋮11\left(dpcm\right)\)
c) \(4^{13}+32^5-8^8\)
\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)
\(=2^{26}+2^{25}-2^{24}\)
\(=2^{24}\left(2^2+2-1\right)\)
\(=2^{24}.5⋮5\left(dpcm\right)\)
Theo anh thì:
M=(1+2010)+(2010^2+2010^3)+(2010^4+2010^5)+(2010^6+2010^7)
M=(1+2010)+2010^2(1+2010)+2010^4(1+2010)+2010^6(1+2010)
M=2011(2010^2+1010^4+2010^6) Vậy M chia hết cho 2011 vì trong 1 tích chỉ cần có 1 thừa số chia hết cho 1 số thì cả tích đó chia hết cho số đó.
\(3^3=27\equiv1\left(mod13\right)\Rightarrow\left(3^3\right)^{670}\equiv1^{670}\equiv1\left(mod13\right)\)
\(\equiv5^2=25\equiv-1\left(mod13\right)\Rightarrow\left(5^2\right)^{1005}\equiv\left(-1\right)^{1005}\left(mod13\right)\)
\(\Rightarrow3^{2010}+5^{2010}\equiv\left(-1\right)+1\equiv0\left(mod13\right)\Rightarrowđpcm\)
20092008=20093*20092005
Vì 20093 chia hết cho 2010 nên 20093*20095 chia hết cho 2010 hay 20092008 chia hết cho 2010
20112010=20114*20112006
Vì 20114 chia hết cho 2010 nên 20114*20112016 chia hết cho 2010 hay 20112010 chia hết cho 2010
=>20092008+20112010 chia hết cho 2010
2009^2008+2011^2010=2009^2008+ 2011^2010+1-1=( + 1) + ( – 1)=( 2009^2008+1)+(2011^2010-1)
= (2009 + 1)( 2009^2007- …) + (2011 – 1)(2011^2009 + …)
= 2010(2009^2008 - …) + 2010( 2011^2009+ …) chia hết cho 2010
Tick nha nggxđn